128 research outputs found

    Probing time-ordering in two-photon double ionization of helium on the attosecond time scale

    Full text link
    We show that time ordering underlying time-dependent quantum dynamics is a physical observable accessible by attosecond streaking. We demonstrate the extraction of time ordering for the prototypical case of time-resolved two-photon double ionization (TPDI) of helium by an attosecond XUV pulse. The Eisenbud-Wigner-Smith time delay for the emission of a two-electron wavepacket and the time interval between subsequent emission events can be unambiguously determined by attosecond streaking. The delay between the two emission events sensitively depends on the energy, pulse duration, and angular distribution of the emitted electron pair. Our fully-dimensional ab-initio quantum mechanical simulations provide benchmark data for experimentally accessible observables.Comment: 8 pages, 5 figures; revised version, added appendi

    Angular distribution in two-photon double ionization of helium by intense attosecond soft X-ray pulses

    Full text link
    We investigate two-photon double ionization of helium by intense (1015W/cm210^{15} W/cm^2) ultrashort (≈300\approx 300 as) soft X-ray pulses (E = 91.6 eV). The time-dependent two-electron Schr\"odinger equation is solved using a coupled channel method. We show that for ultrashort pulses the angular distribution of ejected electrons depends on the pulse duration and provides novel insights into the role of electron correlations in the two-electron photoemission process. The angular distribution at energies near the ``independent electron'' peaks is close to dipolar while it acquires in the ``valley'' of correlated emission a significant quadrupolar component within a few hundred attoseconds.Comment: 17 pages, 6 fig

    Large optical field enhancement for nanotips with large opening angles

    Get PDF
    We theoretically investigate the dependence of the enhancement of optical near-fields at nanometric tips on the shape, size, and material of the tip. We confirm a strong dependence of the field enhancement factor on the radius of curvature. In addition, we find a surprisingly strong increase of field enhancement with increasing opening angle of the nanotips. For gold and tungsten nanotips in the experimentally relevant parameter range (radius of curvature ≄5 \geq 5\,nm at 800 800\,nm laser wavelength), we obtain field enhancement factors of up to ∌35{\sim}35 for Au and ∌12{\sim}12 for W for large opening angles. We confirm this strong dependence on the opening angle for many other materials featuring a wide variety in their dielectric response. For dielectrics, the opening angle dependence is traced back to the electrostatic force of the induced surface charge at the tip shank. For metals, the plasmonic response strongly increases the field enhancement and shifts the maximum field enhancement to smaller opening angles.Comment: 16 pages, 12 figure

    Photovoltaic effect in an electrically tunable van der Waals heterojunction

    Full text link
    Semiconductor heterostructures form the cornerstone of many electronic and optoelectronic devices and are traditionally fabricated using epitaxial growth techniques. More recently, heterostructures have also been obtained by vertical stacking of two-dimensional crystals, such as graphene and related two- dimensional materials. These layered designer materials are held together by van der Waals forces and contain atomically sharp interfaces. Here, we report on a type- II van der Waals heterojunction made of molybdenum disulfide and tungsten diselenide monolayers. The junction is electrically tunable and under appropriate gate bias, an atomically thin diode is realized. Upon optical illumination, charge transfer occurs across the planar interface and the device exhibits a photovoltaic effect. Advances in large-scale production of two-dimensional crystals could thus lead to a new photovoltaic solar technology.Comment: 26 pages, 14 figures, Nano Letters 201

    Decreasing excitation gap in Andreev billiards by disorder scattering

    Full text link
    We investigate the distribution of the lowest-lying energy states in a disordered Andreev billiard by solving the Bogoliubov-de Gennes equation numerically. Contrary to conventional predictions we find a decrease rather than an increase of the excitation gap relative to its clean ballistic limit. We relate this finding to the eigenvalue spectrum of the Wigner-Smith time delay matrix between successive Andreev reflections. We show that the longest rather than the mean time delay determines the size of the excitation gap. With increasing disorder strength the values of the longest delay times increase, thereby, in turn, reducing the excitation gap.Comment: 6 pages, 5 figures, submitted to EP

    Time Double-Slit Interference in Tunneling Ionization

    Get PDF
    We show that interference phenomena plays a big role for the electron yield in ionization of atoms by an ultra-short laser pulse. Our theoretical study of single ionization of atoms driven by few-cycles pulses extends the photoelectron spectrum observed in the double-slit experiment by Lindner et al, Phys. Rev. Lett. \textbf{95}, 040401 (2005) to a complete three-dimensional momentum picture. We show that different wave packets corresponding to the same single electron released at different times interfere, forming interference fringes in the two-dimensional momentum distributions. These structures reproduced by means of \textit{ab initio} calculations are understood within a semiclassical model.Comment: 7 pages, 5 figure
    • 

    corecore