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Abstract
We theoretically investigate the dependence of the enhancement of optical near-fields at nanometric
tips on the shape, size, andmaterial of the tip.We confirm the strong dependence of thefield
enhancement factor on the radius of curvature. In addition, we find a surprisingly strong increase of
field enhancement with increasing opening angle of the nanotips. For gold and tungsten nanotips in
the experimentally relevant parameter range (radius of curvature 5 nm⩾ at 800 nm laser wavelength),
we obtainfield enhancement factors of up to 35∼ for Au and 12∼ forW for large opening angles.We
confirm this strong dependence on the opening angle formany othermaterials featuring awide variety
in their dielectric response. For dielectrics, the opening angle dependence is traced back to the
electrostatic force of the induced surface charge at the tip shank. Formetals, the plasmonic response
strongly increases the field enhancement and shifts themaximum field enhancement to smaller
opening angles.

1. Introduction

Optical near-fields arise when a structure illuminated by an electromagnetic wave is smaller than thewavelength
of the impinging radiation. At the edges and protrusions of such a nanostructure, the electric field can be
significantly enhanced. This nanoscale localization of electric fields has recently found a large number of
applications in nano-optics [1–3]. Due to the dynamic lightning rod effect that enables broadband field
enhancement [4–6], nano-sized tips are employed in a variety of applications such as scanning near-field optical
microscopy (SNOM), tip-enhanced Raman scattering (TERS), and as sources of second-harmonic generation
(SHG) or ultrafast photoemitted electrons [1, 4, 7–12]. The near-field enhancement and localization at the apex
of the nanotip play a key role in all these applications. Nonetheless, there is significant disagreement in the
literature about themagnitude of thefield enhancement at nanotips [1, 4],most notably for gold tips where
theoretical and experimental results varywidely [5, 8, 11, 13–15].

Previous experimental and theoretical investigations have shown that details of the tip geometry near the
apex can strongly influence the response [5, 13, 16–21]. Even thoughmodern nanofabrication techniques such
as focused ion beam etching allowmanufacturing of nanotips with custom-designed geometries, a systematic
study of the relation between the tip design parameters (curvature, opening angle, andmaterial) for realistic
illumination conditions is still lacking.

In this paper, we investigate optical near-field enhancement at nano-sized tips as a paradigmatic example for
a nanostructure. The focus of our study is the behaviour of the electromagnetic field at nanotips, andwe do not
consider thermal effects.We perform fully three-dimensional (3D) numerical simulations employingMaxwell’s
equations combinedwith a realisticmaterial-specific optical dielectric function ( )ϵ ω of nanotips as a pre-
laboratory to guide optimization of the techniques that rely on localizedfield enhancement.We explore the
dependence of optical near-field enhancement on the tip geometry for experimentally relevant tungsten and
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gold tips at 800 nm wavelength and find a strong dependence on both the radius of curvature and the opening
angle of the tip.We inquire into the origin of the unexpected field enhancement for larger angles for both
materials.We generalize our results to a large class ofmaterials by studying near-field enhancement as a function
of the dielectric function of the tipmaterial and find that increased field enhancement for larger angles persists
formanymaterials and laserwavelengths. Technical details of the simulations as well as a comparison of
nanotips to nano-ellipsoids, for which an analytical treatment is possible in the static limit, are given in the
appendices.

2.Opticalfield enhancement at nanotips

The contours of the near-field E r( )nf∣ ∣ follow the boundary of the nanostructure and the field strength decreases
sharply with distance from the surface on the length scale of the radius of curvatureR of the nanostructure (see
figure 1). For analytics and sensing applications, themost important property of near-fields is the strength of the
enhanced near-field Enf∣ ∣ in comparison to the incident field Ein∣ ∣described by thefield enhancement factor ξ.
Itsmagnitude can be quantified through

{ }E r E rmax ( ) ( ) , (1)
r{ }

nf inξ =

where the domain r{ } extends over the entire region in the proximity of the nanostructure. Typically, thefield
enhancement is strongest on the surface of the nanostructure.

Additionally, near-fields also feature a phase shiftϕwith respect to the excitingfield. This can be expressed
employing a generalized complex field enhancement factor exp(i )ξ ξ ϕ= ∣ ∣ [22].When the field enhancement
factor only weakly depends on the laserwavelength over the spectral width of the pulse, the phase shiftϕ is
equivalent to a shift of the carrier-envelope phase of few-cycle laser pulses. The latter becomes an important
control parameter when the pulse duration is reduced to a few optical cycles as recently demonstrated in strong-
field photoemission experiments fromnanostructures [23, 24].

To describe optical near-fields at nanotips, we consider a conical nanotip (figure 1)with a spherical cap at the
apex located in the focus of aGaussian laser beam. This corresponds closely to the geometry often used in
photoemission and SHG at nanotips. In SNOMandTERS experiments, the tip is typically close to a surface or
another nanostructure, which can also contribute to, and usually increases, thefield enhancement. Another
interesting setup for applications are tip arrays, where the proximity of neighbouring nanotipsmay influence the
field enhancement factor.

We numerically solveMaxwell’s equations employing the finite-difference time-domain (FDTD)method,
but cross-check our results with the boundary elementmethod (BEM) as discussed in appendices A–D.The
parameters that characterize our setup are:

• the laser wavelength λ andwaist radiusw0 ( e1 2 intensity radius) of the focus,

• the radius of curvatureR and opening angleα of the tip (defined as the angle between the tip surface and its
axis of symmetry, also called ‘half-opening angle’, figure 1),

• and the optical properties of the tipmaterial given by the frequency dependent dielectric function
( ) ( ) i ( )r iϵ ω ϵ ω ϵ ω= + with r(i)ϵ the real (imaginary) part of ( ( ))ϵ ω λ .

Figure 1.Near-field of a 5 fs, 800 nmλ = laser pulse for an R 10 nm= tungsten tipwith an opening angle of 15α = °. The laser
pulse is propagating in the z direction and is polarized along the x direction. Shownhere are the electricfield strength (colour) and the
direction of the field (arrows) at the point in timewhen the near-field strength is at itsmaximum.
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As the laser beamwaist is found not to significantly affect thefield enhancement factor, the relevant
parameters are reduced toR,α, λ, and ( )ϵ ω . Further, wemay exploit the scaling invariance ofMaxwell’s
equations [27]: an increase of thewavelength sλ λ λ→ ′ = is equivalent to a decrease of the tip radius
R R R s→ ′ = at the same value of the dielectric constant ϵ. For example, thefield enhancement of a tipwith
R̃ 20= nmat awavelength of ˜ 1600λ = nmat dielectric constant ˜ (1600 nm)ϵ ϵ= is the same as the field
enhancement calculated for a tip ofR=10 nmatwavelength 800λ = nmwith the same dielectric constant ϵ̃.
We have numerically verified this scaling. In principle, this scaling property allows a further reduction of the
parameter space.However, the required constancy of ϵ as a function ofω (or, equivalently, as a function of

c2λ π ω= ) imposes strong restrictions on realistic tipmaterials, andwe hence do not exploit this scaling in the
following simulations of gold and tungsten.Note that, while themaximum sharpness of the tip in applications is
limited by the available fabrication technology, increasing the laser wavelength provides an attractive alternative
to realize effectively sharper tips and thus obtain higher field enhancement. (Depending on the application,
theremay be a trade-off between higherfield strengths and other effects of a longer wavelength. In strong-field
photoemission of electrons, for example, increasing thewavelength decreases the efficiency [28].)

In the following, we choose afixedwavelength of 800 nmλ = for whichwe have previously found good
agreement between experiment and simulation for small opening angles 5α ≲ ° [15] and discuss the effects of
the remaining parametersR,α and ϵ. One goal is to separate geometry effects frommaterial effects.

First, we investigate the influence of the tip geometry R( , )α on thefield enhancement factor for two
technologically relevantmaterials, tungsten and gold. At 800 nmλ = wavelength, thesematerials show a
markedly different electromagnetic response (figure 2): The real part of the dielectric function is positive for
tungsten ( (800 nm) 5 19iWϵ ≈ + ) while it is negative for gold ( (800 nm) 23 iAuϵ ≈ − + ) [25]. Tungsten thus
behaves in the visible and near-infrared spectral region like a ‘lossy’ dielectric with strong absorption as Im( )ϵ is
large. On the other hand, the negative dielectric function of gold, typical formetals, indicates plasmonic
behaviour. Corresponding eigenmodes, the surface plasmon polaritons, can be sustained atmetal–dielectric
interfaces. Their damping characterized by the small imaginary part of ϵ is weak compared to other nanotip
materials.

The calculated field enhancement depends strongly on both the radius and the opening angle of the nanotip
(figure 3). For bothmaterials, themaximum enhancement is observed for small radii of curvature as expected
for the dynamic lightning rod effect that predicts afield enhancement near sharp geometric features. Somewhat
unexpectedly, however, we also find a strong dependence of the field enhancement on the tip opening angle for

Figure 2.Dielectric function of tungsten (a) and gold (b) between 100 and 2000 nm (vertical dashed–dotted line: 800 nm). The real
part of the dielectric function of gold is smaller than zero overmost of the plotted rangewhile tungsten has a positive dielectric
function over a largewavelength range (hatched area). (c) Shows the ‘evolution’ of the complex dielectric function ir iϵ ϵ ϵ= + of
some typical nanotipmaterials in the rϵ − iϵ -planewith thewavelength as parameter (colour box).Data for ( )ϵ λ taken from [25, 26].
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bothmaterials.While the twomaterials display a similar field enhancement for small opening angles ( 5α ⩽ °) in
agreementwith recent experiments [15], at intermediate opening angles (10 40α° ≲ ≲ °) the field
enhancement is further enhanced. This enhancement ismore pronounced for gold tips than for tungsten tips.
Gold tips display a distinctmaximumenhancement at 15α ≈ °. For tungsten, themaximumof thefield
enhancement ismuch broader and located around 40α ≈ °. At R 5 nm= , thefield enhancement factor can
reach 36ξ∣ ∣ = for gold tips near 15α = ° and 12ξ∣ ∣ = for tungsten tips with 35α = °. For a larger radius of
R 30 nm= , the dependence on the opening angle is weaker but still substantial with themaximum located near

45α ≈ ° for bothmaterials.
The phase shift also depends on both the opening angle and tip radius and is larger for gold tips than for

tungsten tips.We observe the largest phase shift at intermediate angles 10 30α° ⩽ ⩽ ° for bothmaterials.We
find the absolute value of thefield enhancement factor to be robust under variation of the details of the
simulationwhile the phase shift ismore sensitive (see appendix E for details). In the regionwhere the strongest
increase offield enhancement is observed for very sharp tips, wewere not able in all cases to reliably extract the
phase shift from the gold simulations (for 0 10α< ⩽ ° and R 10 nm⩽ ,figure 3(d)).We presume that this is
due to a localized surface plasmonmode at the tip apex (see below). See also [29] for a discussion of plasmon
resonances and their dephasing times at gold tips.

In order to explore the generality of the observed enhancement at large opening angles we varied the
underlying tip geometry and considered paraboloid and hyperboloid tips. Paraboloid tips are defined entirely by
the radius of curvaturewith their surface given by x y z y z R( , ) ( ) (2 )2 2= − + . For gold and tungsten
paraboloids withR=5–30 nm, thefield enhancement is similar to conical tips for the same radius of curvature
and opening angles around 10∼ °. For hyperbolic tips, on the other hand, the radius of curvature and the
asymptotic opening angle are independent parameters. There, we find that the field enhancement factor for a
given radius of curvature depends significantly less on the opening angle than for conical tips. For R 10 nm=
gold hyperboloids we obtain a field enhancement factor of 10∼ independent of the opening angle. This is
because, for a constant radius of curvature, the asymptotic opening angle of a hyperbolic tip has only aweak
effect on the shape close to the apex and only determines the shape of the shaft far away from the apex (see
appendix F). This indicates that thefield enhancement factor depends crucially on the tip shape in the vicinity of
the apex, which provides clues as to its origin.

Figure 3.Complex field enhancement factor exp(i )ξ ξ ϕ= ∣ ∣ of tungsten (a), (b) and gold tips (c), (d) at 800 nmλ = as a function of
the radius of curvature of the tip and of the half-opening angle. Left column: ξ∣ ∣, right column:ϕ.
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3.Model for the opening angle dependence of thefield enhancement

We turn now to themodelling of the surprising increase offield enhancement with increasing opening angles.
Thefirst key observation is that themain contribution to the field enhancement at the apex is due to the
electrostatic force exerted by the surface charge distribution in a small region around the tip apex (see figure 4)
for all tip radii, opening angles, and tipmaterials, indicating that retardation effects on themicrometer length
scale play only aminor role. This is in agreement with thework of van Bladel [30] andGoncharenko et al [6].

Focusing on themechanismof field enhancement for tungsten and other dielectricmaterials (Re( ) 0ϵ > ),
wefind that the charge density distribution along the tip shaft is similar for all opening angles (see figures 4(a),
(c)), extending about100 nm 8λ≈ along the tip shaft. The effect of this induced surface charge along the tip
shank on the enhanced near-field at the apexmay be investigatedwithin an electrostaticmodel. Assuming for
simplicity themagnitude of the induced surface charge to be constant along the tip shank near the apex in a
region of size 8λ∼ and proportional to the electricfield strength perpendicular to the tip surface, the tip angle
dependence of the surface charge is ( ) sin( )0σ α α∝ (figure 4 inset). The contribution of the tip shank towards
thefield enhancement at the apex is

E S( ) d ( )
1

. (2)
S

apex 2
0 2∫α σ α

ρ
≈

The integral is taken over the surface S of the tip shank from a lower limit near the tip apex ( R2ρ ≳ ) to an upper
limit a fraction of thewavelength away from the apex ( 8ρ λ≲ ), where ρ is the distance from the apex to a point
on the tip surface (seefigure 4 inset). E ( )apex α increases with increasing opening angle because the incident field
component perpendicular to the tip surface increases. Equation (2) yields an angle-dependent component of the
field enhancement

E ( ) sin ( )cos ( ) sin (2 ). (3)apex 2 2 2α α α α∝ ∝

While the details of the angular variation depend on the assumptions for the surface charge distribution and the
shape of the surface S, equation (3) qualitatively describes the observed dependence for dielectrics. Thismodel
predicts a slow rise to amaximum field enhancement around 45° in good qualitative agreement to the full
calculations for tungstenwherewefind themaximumaround 35°–40° (figure 5(a)).We thus interpret thefield

Figure 4.Absolutemagnitude of the surface charge density distribution on the nanotip near the apex calculatedwith the boundary
elementmethod. Laser propagation direction from left to right and polarization along tip axis. All tips have a tip radius of R 5 nm= .
Side view. (a) Tungsten tip, 45α = °; (b) gold tip, 45α = °; (c) tungsten tip, 15α = °; (d) gold tip, 15α = °. Inset (b): coordinates for
electrostaticmodel (equation (2)).
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enhancement for dielectrics as a geometrical effect that relies on the interplay betweenmagnitude of induced
surface charge ( )0σ α and the distance of the induced surface charge from the apex.

For plasmonicmaterials such as goldwith Re( ) 0ϵ < , the induced surface charge at large tip opening angles
resembles the result for dielectric tips (figure 4(b)), indicating a qualitatively similarmechanismoffield
enhancement at large angles. However, themaximumfield enhancement is attained at a smaller opening angle,
and themaximum is narrower than for dielectricmaterials (figure 5(a)), pointing to an additional enhancement
contribution at small angles and small tip radii that is not present for dielectrics. At tip angles near themaximum
field enhancement, our simulations show that the charge density distribution along the tip shaft is strongly
localized at the apex (figure 4(d)), dominating themore extended pattern of the surface charge found for
tungsten tips and larger angles. This suggests that the incident field couples to a surface plasmonmode localized
at the tip apex causing the strong enhancement. The importance of surface plasmons for the observed
dependence offield enhancement on the tip angle is similar to earlier work on near-field enhancement at the
apex of a nanotip [31] as a result of adiabatic nano-focusing of surface plasmons along the shaft [32, 33].While
these observations pertain to a scenariowith propagating surface plasmons and not to a localized plasmon
resonance at the tip apex [34], their similarity to the present case of the amplification of an externalfield suggest
that surface plasmonsmay also play a crucial role for the field enhancement.

For aflat interface between aDrudemetal with plasmon frequency pω (dielectric function

( ) 1 pDrude
2 2ϵ ω ω ω= − ) and vacuum ( 1vacϵ = ), the resonance condition for thewell-knownRitchie surface

plasmon [35] at frequency 2pω ω= is given by

( ) 1 1. (4)
p

Drude

2

2
ϵ ω

ω

ω
= − = −

The generalization of equation (4) to a conewith semiangle α, infinitely sharp tip (R 0→ ), and dielectric
function ( )ϵ ω reads [6, 36, 37]

( )
cos( ) 1

cos( ) 1
. (5)ϵ ω

α
α

= +
−

Equation (5) provides the link between the resonance frequencyω, the frequency-dependent dielectric function
( )ϵ ω of thematerial, and the geometry of the tip described by the opening angleα. Equation (5) can be

equivalently written as

cos( )
( ) 1

( ) 1
. (6)α

ϵ ω
ϵ ω

= +
−

This resonance condition cannot be satisfied for dielectric tips where Re( ) 0ϵ > for any tip geometry as the
right-hand side is 1> . However, for gold at 800 nm, Re( ) 23ϵ = − and the right-hand side of equation (6)
predicts a resonance around 23α = ° in good agreement to our simulations (figure 5(a)). Formaterials in the
infraredwhere Re( )ϵ → −∞ (comparefigure 2), the optimal angle approaches 0°.We confirm that the
localized surface plasmon predicted by equation (6) is indeed responsible for the field enhancement in our
simulations by comparing the resonant angle ( )α ϵ predicted by equation (6) with the angle for themaximum
field enhancement found in our simulations as a function of the real part of the dielectric function (figure 5(b)).

Figure 5. (a) Field enhancement factor as a function of tip opening angle for gold (blue solid line, circles) and tungsten tips (dark red
dashed line, squares) with tip radius R 5 nm= . (b)Maximumfield enhancement factor as function of the real part of the dielectric
function fromFDTD simulations (Im( ) 5ϵ = , R 10 nm= , green solid line and crosses), resonance angle according to equation (6)
(dashed line).
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Wefind overall good agreement between equation (6) and our simulationswhenever Re( ) 0ϵ < . The results of
our simulations are nearly independent of the precise value of Im( )ϵ provided it is small, Im( ) 1ϵ ϵ∣ ∣ ≪ .

A simple and transparent picture offield enhancement at nanotips thus emerges: for nanotips with large
opening angles, the induced surface charge along the tip shank gives rise to amaximumaround 45α = ° that can
be understood from electrostatics. For plasmonic tips with Re( ) 0ϵ < , an additional contribution arises from a
localized surface plasmonmode at the tip apex, leading to even higher field enhancement and a sharper
maximumat smaller angles.

4. The dependence on the dielectric function

To extend our results from tungsten and gold to othermaterials, we performed simulations varying the real and
imaginary parts of the dielectric function of the tipmaterial (figure 6).Wefixed the tip radius at R 10 nm= and
varied the opening angles between 0° and 30°. Thefield enhancement factor increases with increasing tip
opening angle for any given value of the dielectric function.However, as a function of ϵ, ( )ξ ϵ varies significantly
for a given opening angle. For slim tips ( 0α = °,figure 6(a)), the field enhancement increases with increasing
absolute value of the dielectric constant ϵ∣ ∣. For 10α ⩾ °, thefield enhancement has a sharpmaximumat
negative real values of the dielectric function, for example at 10 0iϵ ≈ − + for 30α = ° (figure 6(g)). This is
interpreted in terms of the plasmon resonance expected around Re( ) 14ϵ = − for 30α = ° (equation (5)).With
decreasing tip angle 0α → , equation (5) predicts that this resonancemoves towards Re( )ϵ → − ∞, andwe
qualitatively observe that themaximumfield enhancement and phase shiftmoves along the Im( ) 0ϵ = axis
towards Re( )ϵ → −∞with decreasing tip opening angle. Therefore, and at first glance surprisingly, the
plasmon resonance does not play a significant role for tipswith very small opening angles below 5° and for small
absolute values of the dielectric function ϵ∣ ∣ found formaterials in the optical wavelength range (figure 2(c)).
This is the reasonwhy the enhancement factors for plasmonic and dielectricmaterials closely resemble each
other for small opening angles.

The results from figures 3 and 6 can be used to roughly estimate the field enhancement factor for other tip
materials, radiiR′ andwavelengths λ′ than those discussed here. From the value of ϵ for thematerial and
wavelength in question, the complex ξ for a given opening angle can be obtained fromfigure 6. The so obtained
result, however, is only correct for an effective tip sharpness R 800 nm 10 nmκ λ= = . The behaviour of ξ for a
different sharpness Rκ λ′ = ′ ′ can be approximated by scaling ξ based onfigure 3, where the field enhancement
factor at R 10 nm= should be compared to an effective radius of 800 nm κ′. Depending on how far ϵ and κ′ are
from the parameters discussed in this article, the resulting ξ can be a good approximation or itmay only indicate
a trend.

5. Conclusion

Wehave explored thematerial and geometry dependence of optical near-field enhancement at nanostructures
with the nanotip geometry taken as the prototypical example.We have discovered that, somewhat
counterintuitively, largerfield enhancement can be achieved for larger half-opening angles (20°–40°) of the tip.
This enhancement forfixed radius of curvaturewas found for both tungsten, exemplifying a dielectricmaterial,
and gold, a plasmonicmaterial. Two processes contributing to this enhancement could be identified: for large
opening angles, the increase offield enhancement can be understood from the electrostatic force of the induced
surface charge along the tip shank. Thismechanism is effective in both dielectric and plasmonicmaterials. For
the latter, excitation of localized surface plasmons at the apex gives rise to even stronger enhancement at
intermediate angles. Varying the real and imaginary part of the dielectric function, we found the same qualitative
behaviour for a large number ofmaterials, including other practically relevantmaterials such as aluminium,
iridium, palladium, platinum, silicon, and silver. Our results indicate that, compared to currently employed tip
shapes, a furtherfield enhancement ofmagnitude 2–4 is achievable by employing tipswith larger opening
angles.We expect that such tips will provide a substantially increased signal especially for nonlinear applications.
Note that, while the highest field enhancement factors occur at plasmon resonances, an advantage of off-
resonant field enhancement is that it depends less sensitively on thewavelength, which enables workingwith
broadband ultrashort pulses, even in the single-digit femtosecond pulse duration range.

The strong dependence of the enhancement on the tip geometry and not just on the radius of curvaturemay
explain themany different values for the field enhancement factor of gold tips that have been reported in the
literature, especially considering that the realistic shape of nanotips ismore irregular than the conical tips
employed in our simulations. The increase offield enhancement up to an optimal angle of 20°–40° depending
on the tipmaterial has escaped earlier studies [5] presumably because the dependence on the opening angle was
not sampled in sufficiently fine resolution. Our results suggest that higherfield enhancement factors 10ξ∣ ∣ >
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should be possible even for tungsten tips and other dielectricmaterials. This is consistent with a recent report of
afield enhancement factor of 10∼ for silicon tips with a large opening angle [21]. One reasonwhywe did not
observe higherfield enhancements in our previous experiments with tungsten [15, 38, 39]may be related to the
etchingmethodwe use for tungsten tips, which results in a small opening angle [40].

Figure 6.Complex field enhancement factor exp(i )ξ ξ ϕ= ∣ ∣ of R 10 nm= tips at 800 nmλ = as a function of the tip’s dielectric
constant for opening angles 0° (a), (b), 10° (c), (d), 20° (e), (f), and 30° (g), (h) for a selected region in the Re( )ϵ , Im( )ϵ plane
covering the range of dielectric functions ofmanymaterials at optical wavelengths (see figure 2(c)). Left column: ξ∣ ∣, right column:ϕ.
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Our resultsmay have ramifications for SNOM, tip-enhanced Raman spectroscopy and other techniques that
rely on largefield enhancement factors at rugged tips.Modern nanofabrication techniques such as focused ion
beam etching could easily lead to the desired tip shape and larger enhancement factors.
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AppendixA. FDTD: simulation setup

Our FDTD simulations of thefield enhancement near nanotips were carried out using Lumerical FDTD
Solutions, a commercialMaxwell solver. Our simulations encompass a cubic volume V X Y Z= × × with the
tip apex at the origin r 0= and the tip shaft along the positive x axis (figure 1 isflipped x x→ − with respect to
the coordinates used in our simulation). The exact size of the volume depends on the parameters of a given
simulation, as discussed below. As the volume that can be simulatedwith the FDTD algorithm is necessarily
finite, care needs to be taken in the setup of the simulation to avoid unphysical antenna resonances due to the
finite length of the simulated tip (see figure A1 for an example) [5, 19].Wefind that the results do not depend on
the length of the tip and the size of the focus if one includes the focal spot inside the simulation volume and
ensures that the laser’s electric field at the simulation boundaries lateral to the propagation of the beam is
negligible.We choose the size of the volume accordingly. Typical values are X Y 8000 nm= = , Z 1000 nm= .

The volume ismeshedwith a rectangular grid of non-constant resolution. At the tip apex, the resolution is
considerably higher than in free space at a distance from the tip: themesh node distance varies from
approximately 50 nm in free space to 0.1 nm at the apex of the sharpest tipwe simulate.

The laser ismodelled as aGaussian beamwith thewave vector parallel to the z axis and the polarization
parallel to the x axis and, thus, the tip shaft. The source area (i.e., the areawhere it enters the simulation) is at the
negative z boundary. In our time-domain simulationmethod, we employ a short laser pulse of duration 5 fs
(intensity full width halfmaximum). Therefore, the laser light has a spectral width Δλ.We have verified in
several tip geometries that the pulse duration has negligible effects on the field enhancement factor, so our
results are also valid for longer pulses and continuous-wave excitations. This would be different for sharp
resonances that critically depend on thewavelength.We did not observe such effects for the geometries under
investigation.

The nanotip’s optical properties are given by a dielectric function ir iϵ ϵ ϵ= + , whichwe obtain from
experimental data samples of bulkmetal [41]. Aswith the pulse duration, the variation of ( )ϵ λ for the spectral
range of the laser pulse has no effect onfield enhancement for thematerials we studied in our simulations. This
may be different formaterials andwavelengths where ( )ϵ λ varies rapidly, for example near bulk plasmon
resonances.

Figure A1.Extracted field enhancement factor as function of tip length for a finite tungsten tip in a plane-wave excitation; the distance
between the two peaks is close to the laser wavelength of 800 nm, a clear sign of antenna resonance. The enhancement factor changes
by about a factor of 2 for different tip lengths. This shows that simulating a finite tip in a plane-wave excitation cannot give the correct
field enhancement factor for a larger nanotip in a laser focus.
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It is useful to consider the effect of variations Δϵ from the values of the dielectric constant we assume in our
simulations. These could be due tomeasurement uncertainties in the experimental data samples we use (see [42]
for a recentmeasurement of ϵ for gold and a comparison to older results). Additionally, a weak dependence of
the dielectric constant on the structure size has been found formetal nanostructures smaller than themean free
path of conduction band electrons [43]. Another factor thatmay affect the dielectric constant is the grain size in
polycrystalline nanotips [44]. Asfigure 6 shows, small changes of the dielectric constant do not significantly alter
thefield enhancement factor exceptwhen close to a plasmon resonance. For example, a small shift

5 19i 6 20iϵ = + → + on the complex plane only changes the resulting field enhancement by 2.5%∼ for 20°
tungsten tips (figure 6(e)). Larger effects of a small Δϵ are quite rare and only observed close to resonance: for
example, also at 20α = °, a shift 10 i 9 2iϵ = − + → − + changes thefield enhancement factor by 20%∼ .

A challenge for FDTD simulations of opticalfield enhancement are plasmonic tips (i.e., materials with
1rϵ ≪ − and small iϵ , such as gold at 800 nm) as they can cause a variety of numerical artefacts related to the

appearance of surface plasmons [1, 45], which are excited at the apex and propagate along the tip shaft. Due to
the rectangular FDTDmesh grid, the propagation of these plasmons is difficult to simulate (except for 0α = ) as
they can scatter at the discrete steps of thematerial boundary, causing high loss. In some cases, such
discretization errors can lead to unforeseen localized resonances along the tip shaft where electric fieldsmay be
‘stuck’ long after the laser pulse and surface plasmons are gone. Increasing themesh resolution along the tip shaft
does not prevent the appearance of such numerical artefacts due to themismatch between theCartesian grid and
the local direction of the tip boundary. However, while these localized resonances hinder simulations of
plasmon propagation on the conical shaft for 0α ≠ whichwould be of importance for plasmonic
nanofocussing [33], we found that thefield enhancement factor at the apex could still be reliably calculated in
almost all cases. Only for sharp gold tips (R 10 nm< ) with a small but non-zero opening angle near the
plasmon resonance (equation (6)), which exhibit the largest ‘steps’ due to discretization errors discussed above,
we observe an effect that prevents a correct simulation of near-field enhancement at the apex. At such tips,
surface plasmons are coupled in at the shaft near the apex at the steps caused by discretization errors and
propagate along the shaft from there, interfering with the near-field at the apex. This leads to an increased
uncertainty for the field enhancement factor, and it can sensitively influence the phase shift.

The simulationswere carried out on a desktop computer with an Intel XeonCPUW3530 at 2.8 GHz and
with 18 GB RAM.A single simulation typically took a fewhours to complete. (This varied significantly
depending on the simulation volume and themesh resolution.)We exploit the symmetry of the setupwith
respect to reflection at the y=0 plane to reduce computation time andmemory requirements.

Appendix B. FDTD: obtaining thefield enhancement factor

Themagnitude of the field enhancement factor ξ∣ ∣ is defined as the ratio of themaximally enhanced field
strength to the driving field strength. The amplitude of the driving laser pulse in the bare focal plane (z = 0) is set
to 1 in our simulations. In principle, thefield enhancement factor could therefore be obtained by simply taking
themaximumof the electric field strengths tE r( , ) in a simulation:

tE r˜ max ( , ) . (B.1)
x y z t, , ,

ξ =

However, there are several problemswith this approach due to numerical limitations and artefacts. As the
electric field strength decreasesmonotonically with distance from the tip surface, themaximumfield strength is
always found at a point of the simulation next to thematerial-vacuumboundary, and depends on the placement
of the last grid point with respect to the boundary. Therefore, ξ̃∣ ∣depends on themesh resolution of the
simulation at the boundary of the tip apex. A second problem arises due to staircasing effects, whichmay cause
an unrealistically high electric field strength at single points of the simulation. This effect is particularly
noticeable for plasmonicmaterials.

To avoid the numerical problems related to simply taking themaximum,we use amore robust and efficient
method to obtain ξ∣ ∣, as illustrated infigure B1 .Note that the highestfield enhancement occurs in the plane of
symmetry if the laser polarization is parallel to the tip axis. Additionally, for the tips we investigate (R 30 nm⩽
and 800 nmλ = ), themaximum is at or very close to the tip axis y z 0= = . It is therefore sufficient to analyse
the on-axis electric fields x tE( , 0, 0, ) in order to obtain thefield enhancement factor. The deviation in strength
from the actual fieldmaximum is around 6% for 30nm radius and less than 1% for 5 nm radius. If we
investigated larger tip radii or, equivalently, smaller wavelengths, themaximum field strengthwould shift
further away from the axis [46] andwewould have to take this asymmetry into account.

We obtain thefield enhancement factor in the followingway. First, we find out the time of the greatest
enhancement tmax by locating tE rmax ( , )t ∣ ′ ∣ at a point r′ close to the tip apex. Then, we consider the electric
field at t tmax= on the y z 0= = line outside the tip (x 0< ) and fit a quadratic decay
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f x
a

x x
f( )

( )
(B.2)

0
2 bg=

−
+

to it.We extrapolate the fit function back to the tip surface at x=0, and the value of thefit function at this point
yields ξ∣ ∣. In the fit function, the x x1 ( )0

2− termmodels the near-field and f cos( )bg ϕ= is the background

field strength of the exciting laser pulse.While the background field amplitude is 1, fbg also takes the phase shiftϕ
between near-field and excitingfield into account. For the phase shift, see below. a and x0 are the free fit
parameters. An example of such a fit is shown infigure B1(a). Note that we only evaluate the fit function and the
simulation results on a line that ismuch smaller than thewaist radiusw0, sowe can assume the background field
strength to be constant.

It should be noted that it is not clear from the simulations that the near-field decreases quadratically with
distance. In fact, fit functionswith powers of 1 to 3 produce an almost equally good fit and yield approximately
the samefield enhancement factor. If the power itself is allowed to vary in the fit, we obtain non-integer powers
between 1 and 3, with different results for different simulations. This is unlike the near-field at nanospheres, for
example, which shows a third-order decrease with the singularity exactly at the centre of the sphere [2].We have
chosen a quadratic fit function because it leads to a position of the singularity x0 close to the centre of the sphere
at the tip apex. In any case, the choice offit function changes ξ only insignificantly (by 1.5 %∼ in the example of
figure B1(a)).

A comparison of the enhancement factors obtained by fitting and by simply taking themaximum is shown as
a function of themesh resolution in figure B1(b). Thefieldmaximumconvergesmuchmore slowly than the
quadratic fitmethod, which deviates by less than 5% from the final value of ξ even for low resolutions, i.e., few
mesh steps per radius. They both converge to the same value. This shows that staircasing effects do not cause
unrealistically highfield strengths in this series of simulations.

We conclude that the near-field around the tip apex is alreadymodelled correctly at lower resolutions ( 40∼
steps per radius) and that the additional dependence on themesh resolution comes only from the discretization
of themesh, whichwe can efficiently circumvent by extrapolating the near-field to the surface of the tip as
described above. As a compromise between precision of the results and computational resource requirements,
we used amesh resolution of R 40 as function of tip radiusR for all simulations except the oneswherewe vary
the dielectric function of the tip (figure 6). Therewe used amesh resolution of R 30 to speed up the
computations.

The phase shiftϕ can be obtained by comparing the zero-crossing of the near-field close to the tipwith the
zero-crossing of the undisturbed pulse at negative x. Due to the limited temporal resolution of our simulations
and numerical dispersion [47] that shifts the carrier-envelope phase in amesh-dependent way, thismethod
comeswith an unavoidable error, whichwe estimate to be around 0.05Δϕ π≈ by comparing simulations of the
same nanotipwith differentmesh resolutions and simulation volumes.With knowledge of both the phase shift
and themagnitude of the enhancement, we can completely characterize exp(i )ξ ξ ϕ= ∣ ∣ .

In afinal step, we apply a correction 0.95ξ ξ→ to thefield enhancement factor. The value of 0.95 is
obtained from simulations of the laser pulses without including the nanotip. This correction factor compensates
pulse propagation effects in the simulation, which reduce the amplitude of the exciting pulse in the focal plane.
We attribute these effects to both numerical dispersion and our use ofGaussian pulses in a regimewhere the
waist radiusw0 is of the same order ofmagnitude as thewavelength λ.

Figure B1. (a) Example of thefittingmethod. The black dots are on-axis (y z0, 0= = ) simulation results of the electric field for
negative x at themoment of the greatest enhancement. The blue line shows a fit using equation (B.2). (b) Field enhancement factor of
a tungsten tip as as function of themesh resolution near the apex, obtained by differentmethods: taking themaximum (red circles)
and applying a quadratic fit (blue squares). Clearly, thefittingmethod is computationally less expensive.We typically use 30 or 40
mesh steps per radius for the simulations.
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AppendixC. Boundary elementmethod

To rule out systematical errors from the space discretization and time integration in the FDTD simulations, we
double-checked the reliability of our simulations by also numerically solvingMaxwell’s equationswith the BEM
as implemented in the public-domain SCUFF-EMpackage [48–50]. Being a frequency-domainmethod, the
BEM is free from time integration errors that contribute to the errors in FDTD. Time-domain quantities can be
reconstructed by superimposingmany frequency components and the convergence of this Fourier synthesis can
be checked by increasing the frequency range and resolution. TheBEM takes advantage of the analytically
known solutions ofMaxwell’s equations in homogeneousmedia, so that only the surface of the tip is discretized.
This can lead to lowermemory requirements and improved scaling compared to FDTD,where the 3D
simulation volumemust be discretized. Importantly, this smooth discretization of the tip surface also allows us
to assess the influence of theCartesian grid that is employed in the FDTD simulations leading to staircasing
artefacts.

A typical simulation run proceeds as follows. The tip geometry is defined depending on the geometrical
parameters tip radius and opening angle as for the FDTD calculations. First, the surface of the tip is discretized
into Npanels triangles employing the public-domainmeshing software gmsh [51].We use an adaptivemesh to
resolve the small-scale features of the near-field around the tip apexwith discretization steps of 0.2 nm near the
apex. The remainder of the tip is discretized in larger steps of about 1 to 20 nm that resolve the geometry of the
tip and aremuch smaller than thewavelength of surface plasmons that can be excited at the sharp tip apex. The
total length of the simulated tipwas between 1.7 and 6micron. The inside of the tip is designated the
experimental dielectric bulk constant of thematerial at theworkingwavelength [26]. The incident field is chosen
as a focused laser beam as for the FDTD results [52]. The BEMsolver SCUFF-EM is then employed to solve for
the electromagnetic fields where the numerical cost scales with the size of the BEMmatrix, Npanels

2∼ . For the
calculations presented in this paper, N 10 000panels ≈ which corresponds to 15 GB∼ of RAM.After the BEM
matrix equations are solved by standard linear algebramethods, the electric near-field in the region 0.05 nm in
front of the tip axis is evaluated and extrapolated to the tip apex. Thefield enhancement and phase shift are then
given by the absolute value and phase of the ratio of the totalfield perpendicular to the tip surface to the
incoming field along the tip axis. Thefield enhancement is only weakly dependent on the laserwavelength so
that the phase shift corresponds to a carrier-envelope phase shift for few-cycle laser pulses when the time-
dependent nearfield is reconstructed by a Fourier transform.

The BEM is restricted to piecewise homogeneousmaterial configurations, so that absorbing boundaries like
perfectlymatched layers that exist for FDTDorfinite elementmethods are precluded. This can lead to problems
formaterials where the propagation length of surface plasmons on the structure of interest is larger than the size
of the structure that can bemodelled. For tungsten, which has a large imaginary part of the dielectric function
around 800 nm, excitations from the tip apex propagating along the tip shaft decay rapidly (typically within
200 nm [3]).However, the situation changes for plasmonicmaterials like goldwhere the propagation distance
of surface plasmons can be up to several tens ofmicrons, rendering the simulation of themesoscopic structure
up to the lengthwhere the plasmons are fully decayed numerically infeasible.We instead use tips of a fewmicron
length also for plasmonicmaterials and exploit the fact that, for short enough pulses, the incident and reflected
electric fields arewell separated in time. In frequency space, the reflections of surface plasmons from the back
end of the tip contribute to the near-field at the tip apex, leading to unphysical peaks in the electric near-field at
frequencies that change for different tip lengths (‘antenna resonances’).Wefilter out the contributions of the
reflected surface plasmons by transforming to the time domain and only taking into account the short-time
response to a few-cycle laser pulse, as the surface plasmonwave packet that is reflected from the back end of the
tipwill be delayed by at least 7 fs permicron tip length (speed of light c 300 nm fs 1≈ − ).Wefind that, while the
interference pattern stemming from the antenna resonances changes with increasing tip length, the short-time
behaviour calculated by a Fourier transformof the laser spectrum iswell converged if the incident and reflected
wave packets are well separated in time, which can be achieved by a tip length substantially below the surface
plasmon propagation length. This low-pass filter in the time domain corresponds tofiltering out the high-
frequency oscillations of the antenna resonances in frequency space, i.e., smearing out the interference fringes
over the spectrumof a short incident laser pulse. The BEMcalculations for plasmonicmaterials, where
simulations at several wavelengthsmust be combined, are thus significantlymore costly than those for non-
plasmonicmaterials.

AppendixD. Comparison between FDTDandBEMresults

InfigureD1 , we compare results for the field enhancement factor and phase shift of nanotips obtained from
simulations using either the FDTDor the BEM. Shownhere are results for different geometries of tungsten and

12

New J. Phys. 17 (2015) 063010 SThomas et al



gold tips. In general, wefind a good agreement between the two numericalmethods. As discussed above, gold
tips aremore challenging to simulate than tungsten tips for both the FDTDandBEMmethods, so it is not
surprising that the agreement between the twomethods is somewhat better for tungsten than for gold.

Thefield enhancement factor obtained by the twomethods typically agrees within 10%∼ , with the exception
of a few particular geometries in the vicinity of the plasmon resonance like R( 5 nm, 10 , Au)α= = ° infigure
D1(a), wherewe observe deviations of around 20%. For the phase shift, the deviation between the twomethods
is approximately 0.1 π .

We conclude that the results presented in this article do not exhibit significant systematic errors due to the
choice of simulationmethod, and that both FDTD andBEMarewell suited for the simulation of near-fields at
nanotips.

Appendix E. Comparison to nano-ellipsoids

To elucidate the relationship between field enhancement and dielectric function, we compare our simulations
for nanotips to the near-field of ellipsoids for which an analytic solution is available in the static limit [3, 5, 53],
see also [1, 13]. For a rotationally symmetric ellipsoidwith two equal axes b= c and amajor axis a along the
polarization direction, the complexfield enhancement factor for a given ( )ϵ λ is (in the limit a b c, , λ≪ )

A r
( )

( )

1 [ ( ) 1] ( )
(E.1)ξ λ

ϵ λ
ϵ λ

=
+ −

with the so-called shape factorA(r) depending on its aspect ratio r a b= ,

( )
A r

r

r r

r
( )

1

1

arcsin 1

( 1 )
. (E.2)

2

2

2 3 2
=

−
−

−

−

The shape factor varies smoothly from A r( 0) 1→ = for pancake-like oblate ellipsoids via A r( 1) 1 3= = for
spheres to A r( ) 0→ ∞ = for cigar-like prolate ellipsoids. The resultingfield enhancement (equation (E.1))

FigureD1.Comparison between FDTD results (circles connected by solid lines) and BEM results (squares connected by dashed lines)
for thefield enhancement factor ξ∣ ∣ (a), (b) and phase shiftϕ (c), (d) in different geometries. Themissing values for the phase shift of
R 5 nm= gold tips around 5α = ° are due to the numerical problemswith this geometry, as discussed in appendix A.
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assumes itsminimumaround 0ϵ → while itsmaximum is found at the dipole resonance at the pole of
equation (E.1), i.e., for

A r1 1 ( ). (E.3)ϵ = −

Equation (E.3) encodes the relationship between dielectric function and geometry in analogy to equation (5)
with the aspect ratio playing a similar role as the tip opening angle in equation (5). For nano-spheres
(A r( 1) 1 3= = ,figure E1 ), we find 2ϵ = − , thereby recovering the firstMie plasmon at 3pω ω= for a

Drudemetal ( ( ) 1 pDrude
2 2ϵ ω ω ω= − ). Away from the resonance, the field enhancement for a nanosphere

asymptotically approaches A( ) 1 (1) 3ξ ϵ∣ ∣ → ∞ = = .

Figure E1.Complex field enhancement factor exp(i )ξ ξ ϕ= ∣ ∣ of nanospheres (aspect ratio r = 1, shape factor A 1 3= ) with radius
R λ≪ obtained from equation (E.1). (a) ξ∣ ∣, (b)ϕ.

Figure E2.Complex field enhancement factor exp(i )ξ ξ ϕ= ∣ ∣ of ellipsoids with aspect ratios 20 (a), (b) and 3.5 (c), (d) as a function
of the dielectric constant ir iϵ ϵ ϵ= + , according to equation (E.1). Left column: ξ∣ ∣, right column:ϕ.
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For other aspect ratios, the overall shape of ( )ξ ϵ remains the samewhile its value ( )ξ ϵ∣ ∣ → ∞ changes. For
any aspect ratio, a resonance is only attainable formaterials with a negative dielectric function Re( ) 0ϵ < . The
transition from a sphere to a needle-like ellipsoid changing the shape factor from A 1 3= to A 0→ in
equation (E.1)magnifies the region of appreciable field enhancement. This is illustrated by comparing figure E1
withfigures E2 (c), (d), which shows ( )ξ ϵ for an elongated ellipsoidwith aspect ratio 3.5. As the aspect ratio
increases, the position of the resonancemoves tomore negative values of Re( )ϵ .

Thefield enhancement factor of a needle-like ellipsoidwith a large aspect ratio r=20 (figures E2(a), (b))
resembles the extreme case r → ∞, where the field enhancement factor is simply ( )ξ ϵ ϵ= . The same result was
found for paraboloids in the quasi-static approximation [54]. The increasing enhancement of the electric field
with increasing discontinuity of ϵ∣ ∣at the ellipsoid’s boundary can be interpreted as broadbandfield
enhancement due to the lightning rod effect [15]. The other extreme case of a pancake-like surface, r=0, yields a
vanishing field enhancement ( ) 1ξ ϵ = .

The near-field at nano-ellipsoids is qualitatively similar to nanotips, with the aspect ratio of the ellipsoid
playing a role analogous to the opening angle of the tip. Comparing figures 6 and E2, we find that slimnanotips

0α = ° behave similarly to slim ellipsoids with aspect ratio 20 (increasing enhancement factor with ϵ∣ ∣,
increasing phase shift for larger angles arg( )ϵ ), while broader nanotips with opening angle 30α = ° are similar to
broader ellipsoids with aspect ratio 3.5∼ (broad plasmon resonance in the 0rϵ < region, large phase shift in
between 0 and the resonance).

The angle dependence of tungsten and gold tips (figure 5(a))may be compared to the aspect ratio
dependence of tungsten and gold ellipsoids (figure E3). The latter show lowfield enhancement for small aspect
ratios and converge to approximately the same enhancement factor of 20∼ for high aspect ratios as they share a
similar value of ϵ∣ ∣at 800 nmλ = (see figure 2). In between, however, the behaviour is different: while the field
enhancement factor of tungsten increasesmonotonically, gold exhibits an additional plasmon resonance at an
aspect ratio of around r=6, leading to far higher field enhancement.

Figure E3. Field enhancement factor ξ∣ ∣of tungsten (red dashed) and gold (blue solid) nano-ellipsoids at 800 nmλ =
(equation (E.1)). For better visibility, thefield enhancement of gold between 5° and 8° is scaled by 0.2 (dotted box).

Figure F1.Comparison of parabolic, hyperbolic (left) and conical (right) tip shapeswith a radius of 20 nm and different opening
angles.
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Appendix F. Comparison of tip geometries

Figure F1 shows a comparison between different tip shapes for the same radius of curvature R 20 nm= . For
any given radius of curvature, the shape of parabolic tips is uniquely characterized, while both conical and
hyperbolic tips have the opening angle as an additional free parameter. Themain difference between hyperbolic
and conical tips is that conical tips aremuch slimmer close to the apex if the opening angle is small, while the
shape of a hyperbolic tip converges to a paraboloid for 0α → °. This explains theweaker opening angle
dependence of hyperbolic tips as compared to conical tips.
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