182 research outputs found

    Ebullition of Oxygen From Seagrasses Under Supersaturated Conditions

    Get PDF
    Gas ebullition from aquatic systems to the atmosphere represents a potentially important fraction of primary production that goes unquantified by measurements of dissolved gas concentrations. Although gas ebullition from photosynthetic surfaces has often been observed, it is rarely quantified. The resulting underestimation of photosynthetic activity may significantly bias the determination of ecosystem trophic status and estimated rates of biogeochemical cycling from in situ measures of dissolved oxygen. Here, we quantified gas ebullition rates in Zostera marina meadows in Virginia, U.S.A. using simple funnel traps and analyzed the oxygen concentration and isotopic composition of the captured gas. Maximum hourly rates of oxygen ebullition (3.0 mmol oxygen m-2 h-1) were observed during the coincidence of high irradiance and low tides, particularly in the afternoon when oxygen and temperature maxima occurred. The daily ebullition fluxes (up to 11 mmol oxygen m-2 d-1) were roughly equivalent to net primary production rates determined from dissolved oxygen measurements indicating that bubble ebullition can represent a major component of primary production that is not commonly included in ecosystem-scale estimates. Oxygen content comprised 20-40% of the captured bubble gas volume and correlated negatively with its δ18O values, consistent with a predominance of mixing between the higher δ18O of atmospheric oxygen in equilibrium with seawater and the lower δ18O of oxygen derived from photosynthesis. Thus, future studies interested in the metabolism of highly productive, shallow water ecosystems, and particularly those measuring in situ oxygen flux, should not ignore the bubble formation and ebullition processes described here

    Ebullition of oxygen from seagrasses under supersaturated conditions

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. H., Sutherland, K., Wankel, S. D., Burdige, D. J., & Zimmerman, R. C. Ebullition of oxygen from seagrasses under supersaturated conditions. Limnology and Oceanography, (2019), doi:10.1002/lno.11299.Gas ebullition from aquatic systems to the atmosphere represents a potentially important fraction of primary production that goes unquantified by measurements of dissolved gas concentrations. Although gas ebullition from photosynthetic surfaces has often been observed, it is rarely quantified. The resulting underestimation of photosynthetic activity may significantly bias the determination of ecosystem trophic status and estimated rates of biogeochemical cycling from in situ measures of dissolved oxygen. Here, we quantified gas ebullition rates in Zostera marina meadows in Virginia, U.S.A. using simple funnel traps and analyzed the oxygen concentration and isotopic composition of the captured gas. Maximum hourly rates of oxygen ebullition (3.0 mmol oxygen m−2 h−1) were observed during the coincidence of high irradiance and low tides, particularly in the afternoon when oxygen and temperature maxima occurred. The daily ebullition fluxes (up to 11 mmol oxygen m−2 d−1) were roughly equivalent to net primary production rates determined from dissolved oxygen measurements indicating that bubble ebullition can represent a major component of primary production that is not commonly included in ecosystem‐scale estimates. Oxygen content comprised 20–40% of the captured bubble gas volume and correlated negatively with its δ18O values, consistent with a predominance of mixing between the higher δ18O of atmospheric oxygen in equilibrium with seawater and the lower δ18O of oxygen derived from photosynthesis. Thus, future studies interested in the metabolism of highly productive, shallow water ecosystems, and particularly those measuring in situ oxygen flux, should not ignore the bubble formation and ebullition processes described here.Two anonymous reviewers provided thoughtful contributions that improved this manuscript. We thank Miraflor Santos, Victoria Hill, David Ruble, Jeremy Bleakney, and Brian Collister for assistance in the field and the staff of the Anheuser‐Busch Coastal Research Center for logistical support. This work was supported by NSF OCE grants 1633951 (to MHL) and 1635403 (to RCZ and DJB), NASA Fellowship NESSF NNX15AR62H (to KS), and a fellowship from the Hansewissenschaftskolleg (Institute for Advanced Studies; to SDW)

    An abyssal hill fractionates organic and inorganic matter in deep-sea surface sediments

    Get PDF
    Current estimates suggest that more than 60% of the global seafloor are covered by millions of abyssal hills and mountains. These features introduce spatial fluid-dynamic granularity whose influence on deep-ocean sediment biogeochemistry is unknown. Here we compare biogeochemical surface-sediment properties from a fluid-dynamically well-characterized abyssal hill and upstream plain: (1) In hill sediments, organic-carbon and -nitrogen contents are only about half as high as on the plain while proteinaceous material displays less degradation; (2) on the hill, more coarse-grained sediments (reducing particle surface area) and very variable calcite contents (influencing particle surface charge) are proposed to reduce the extent, and influence compound-specificity, of sorptive organic-matter preservation. Further studies are needed to estimate the representativeness of the results in a global context. Given millions of abyssal hills and mountains, their integrative influence on formation and composition of deep-sea sediments warrants more attention

    Acidification of Northeastern USA Lakes From Rising Anthropogenic-Sourced Atmospheric Carbon Dioxide and Its Effects on Aluminum Speciation

    Get PDF
    The impact of rising atmospheric CO2 (pCO2atm) from anthropogenic activities on pH, dissolved inorganic carbon, carbonate mineral saturation, and aluminum (Al) speciation is evaluated for 18 northeastern USA lakes using polythermal, sliding activity reaction path models. pCO2atm was forced using two scenarios from the IPCC\u27s Sixth Assessment Report in which pCO2atm attains either 600 or 1,100 ppm in 2,100. Results suggest pH will decrease 0.15 and 0.32 pH units, aCO2-3 will decrease 24% and 49%, and Ωaragonite will decrease 21% and 45%, respectively. These changes are of the same magnitude as those expected for the oceans. The effects of rising pCO2atm on sub‐lethal 20% effect concentrations (i.e., EC20) of Al for brook trout (Salvelinus fontinalis) are evaluated with the biotic ligand model, which indicates Al toxicity effects will increase as pH decreases. These changes could reverse gains in water quality and fisheries health achieved since implementation of the Clean Air Act

    Radiocarbon Evidence for the Importance of Surface Vegetation on Fermentation and Methanogenesis in Contrasting Types of Boreal Peatlands

    Get PDF
    We found a consistent distribution pattern for radiocarbon in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and methane replicated across spatial and temporal scales in northern peatlands from Minnesota to Alaska. The 14C content of DOC is relatively modern throughout the peat column, to depths of 3 m. In sedge-dominated peatlands, the 14C contents of the products of respiration, CH4 and DIC, are essentially the same and are similar to that of DOC. In Sphagnum- and woody plant-dominated peatlands with few sedges, however, the respiration products are similar but intermediate between the 14C contents of the solid phase peat and the DOC. Preliminary data indicates qualitative differences in the pore water DOC, depending on the extent of sedge cover, consistent with the hypothesis that the DOC in sedge-dominated peatlands is more reactive than DOC in peatlands where Sphagnum or other vascular plants dominate. These data are supported by molecular level analysis of DOC by ultrahigh-resolution mass spectrometry that suggests more dramatic changes with depth in the composition of DOC in the sedge-dominated peatland pore waters relative to changes observed in DOC where Sphagnum dominates. The higher reactivity of DOC from sedge-dominated peatlands may be a function of either different source materials or environmental factors that are related to the abundance of sedges in peatlands

    Carbon Budget of Tidal Wetlands, Estuaries, and Shelf Waters of Eastern North America

    Get PDF
    Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here we construct such a budget for eastern North America using historical data, empirical models, remote sensing algorithms, and process‐based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they, respectively, make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters, and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling

    Simple transfer functions for calculating benthic fixed nitrogen losses and C:N:P regeneration ratios in global biogeochemical models

    Get PDF
    Empirical transfer functions are derived for predicting the total benthic nitrate loss(LNO3) and the net loss of dissolved inorganic nitrogen (LDIN) in marine sediments,equivalent to sedimentary denitrification. The functions are dynamic vertically integratedsediment models which require the rain rate of particulate organic carbon to the seafloor(RRPOC) and a proposed new variable(O2-NO3)bw (bottom water O2 concentration minus NO3-concentration) as the only input parameters. Applied globally to maps of RRPOC and(O2-NO3)bw on a 1° x 1° spatial resolution, the models predict a NO3- drawdown of 196 Tg yr-1 (LNO3)of which 153 – 155 Tg yr-1 is denitrified to N2 (LDIN). This is in good agreement with previous estimates using very different methods. Our approach implicitly accounts for fixed N loss via anammox, such that our findings do not support the idea that the relatively recent discovery of anammox in marine sediments might require current estimates of the global benthic marine N budget to be revised. The continental shelf (0 – 200 m) accounts for >50% of global LNO3 and LDIN, with slope (200 – 2000 m) and deep-sea (>2000 m) sediments contributing ca. 30% and 20%, respectively. Denitrification in high-nitrate/low-oxygen regions such as oxygen minimum zones is significant (ca. 15 Tg N yr-1; 10% of global) despite covering only 1% of the seafloor. The data are used to estimate the net fluxes of nitrate (18 Tg N yr-1) and phosphate(27 Tg P yr-1) across the sediment-water interface. The benthic fluxes strongly deviate from Redfield composition, with globally averaged N:P, N:C and C:P values of 8.3, 0.067 and 122, respectively, indicating world-wide fixed N losses (by denitrification) relative to C and P. The transfer functions are designed to be coupled dynamically to general circulation models to better predict the feedback of sediments on pelagic nutrient cycling and dissolved O2 distributions

    Neodymium Isotope Geochemistry of a Subterranean Estuary

    Get PDF
    Rare earth elements (REE) and Nd isotope compositions of surface and groundwaters from the Indian River Lagoon in Florida were measured to investigate the influence of submarine groundwater discharge (SGD) on these parameters in coastal waters. The Nd flux of the terrestrial component of SGD is around 0.7 Âą 0.03 Îźmol Nd/day per m of shoreline across the nearshore seepage face of the subterranean estuary. This translates to a terrestrial SGD Nd flux of 4 Âą 0.2 mmol/day for the entire 5,880 m long shoreline of the studied portion of the lagoon. The Nd flux from bioirrigation across the nearshore seepage face is 1 Âą 0.05 Îźmol Nd/day per m of shoreline, or 6 Âą 0.3 mmol/day for the entire shoreline. The combination of these two SGD fluxes is the same as the local, effective river water flux of Nd to the lagoon of 12.7 Âą 5.3 mmol/day. Using a similar approach, the marine-sourced SGD flux of Nd is 31.4 Âą 1.6 Îźmol Nd/day per m of shoreline, or 184 Âą 9.2 mmol/day for the investigated portion of the lagoon, which is 45 times higher than the terrestrial SGD Nd flux. Terrestrial-sourced SGD has an ÎľNd(0) value of -5 Âą 0.42, which is similar to carbonate rocks (i.e., Ocala Limestone) from the Upper Floridan Aquifer (-5.6), but more radiogenic than the recirculated marine SGD, for which ÎľNd(0) is -7 Âą 0.24. Marine SGD has a Nd isotope composition that is identical to the ÎľNd(0) of Fe(III) oxide/oxyhydroxide coated sands of the surficial aquifer (-7.15 Âą 0.24 and -6.98 Âą 0.36). These secondary Fe(III) oxides/oxyhydroxides formed during subaerial weathering when sea level was substantially lower during the last glacial maximum. Subsequent flooding of these surficial sands by rising sea level followed by reductive dissolution of the Fe(III) oxide/oxyhydroxide coatings can explain the Nd isotope composition of the marine SGD component. Surficial waters of the Indian River Lagoon have an ÎľNd(0) of -6.47 Âą 0.32, and are a mixture of terrestrial and marine SGD components, as well as the local rivers (-8.63 and -8.14). Nonetheless, the chief Nd source is marine SGD that has reacted with Fe(III) oxide/oxyhydroxide coatings on the surficial aquifer sands of the subterranean estuary

    Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings : Implications for Ediacaran taphonomic models

    Get PDF
    The authors thank Duncan McIlroy and Alex Liu for their discussions, help, comments and field support, the National Trust for access to Longmyndian localities, and the staff of the British Geological Survey Palaeontology unit and the Oxford University Museum of Natural History for their assistance with access to materials. The comments and suggestions of two anonymous reviewers and Nora Noffke significantly improved the manuscript.Peer reviewedPostprin

    A marine heat wave drives massive losses from the world\u27s largest seagrass carbon stocks.

    Get PDF
    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay’s seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO2 could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4–21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system
    • …
    corecore