92 research outputs found

    The Tumor Microenvironment of High Grade Serous Ovarian Cancer

    Get PDF
    The Special Issue on high grade serous ovarian cancer (HGSOC) and the contribution of the tumor micro-environment (TME) consisted of reviews contributed by leaders in the ovarian cancer (OC) field. [...]

    Rational Design, Synthesis, and Biological Evaluation of Progesterone-Modified MRI Contrast Agents

    Get PDF
    SummaryA series of contrast agents for magnetic resonance imaging (MRI) aimed at noninvasively determining the hormone receptor status of cancer in vitro was developed. These MRI contrast agents were prepared by conjugating progesterone to clinically used Gd(III) chelates. These agents exhibited higher progesterone receptor binding affinities in the nanomolar range and intracellular accumulation. High logP values of the modified compounds suggested that the lipophilicity of the steroid conjugates may have contributed to membrane permeability. Synchrotron radiation X-ray fluorescence microscopy and magnetic resonance images revealed that the synthesized conjugates showed the greatest cellular accumulation and significant increase in relaxivity in vitro compared to the previously developed steroid-modified agent. Transcriptional assays using the progesterone response element linked to luciferase indicated that the contrast agents entered the cell, interacted with the biological target, and drove specific progesterone-mediated transcription

    The Tumor Microenvironment of High Grade Serous Ovarian Cancer

    Get PDF
    The Special Issue on high grade serous ovarian cancer (HGSOC) and the contribution of the tumor microenviroment (TME) consists of reviews contributed by leaders in the OC field. As HGSOC metastases have a highly complex TME, there is an urgent need to better understand the TME in general, its distinct components in particular, and the role of the TME in the context of disease recurrence and development of chemoresistance. The Special Issue incorporates the current understanding of the different parts of thd TME components, including the cancer cells themselves, the cells surrounding the cancer cells or stromal cells, and the cells of the immune system, which are attracted to the site of metastases. In addition to these cells of the TME, the role of various cellular factors made by the cells of the TME are also the subject of the reviews. In addition, reviews in this Special Issue cover the complex relationships between the molecular mechanisms of HGSOC progression, including genomic, epigenomic and transcriptomic changes and changes in the immune cell landscape, as these may provide attractive new molecular targets for HGSOC therapy

    A Steroid-Conjugated Contrast Agent for Magnetic Resonance Imaging of Cell Signaling

    Get PDF
    We have synthesized the first steroid hormone−MR contrast agent conjugate designed to track the cell signaling process upon binding to a gene switch system. The derivative has a high relaxivity and when tested in vitro is active as a progesterone antagonist (RU-486). By combining a transcriptional system and a noninvasive imaging technology, such as MRI, it would be a powerful tool to research the cell signaling pathway in vivo

    Spontaneous Transformation of Murine Oviductal Epithelial Cells: A Model System to Investigate the Onset of Fallopian-Derived Tumors

    Get PDF
    High-grade serous carcinoma (HGSC) is the most lethal ovarian cancer histotype. The fallopian tube secretory epithelial cells (FTSECs) are a proposed progenitor cell type. Genetically altered FTSECs form tumors in mice; however, a spontaneous HGSC model has not been described. Apart from a subpopulation of genetically predisposed women, most women develop ovarian cancer spontaneously, which is associated with aging and lifetime ovulations. A murine oviductal cell line (MOELOW) was developed and continuously passaged in culture to mimic cellular aging (MOEHIGH). The MOEHIGH cellular model exhibited a loss of acetylated tubulin consistent with an outgrowth of secretory epithelial cells in culture. MOEHIGH cells proliferated significantly faster than MOELOW, and the MOEHIGH cells produced more 2D foci and 3D soft agar colonies as compared to MOELOW. MOEHIGH were xenografted into athymic female nude mice both in the subcutaneous and the intraperiteonal compartments. Only the subcutaneous grafts formed tumors that were negative for cytokeratin, but positive for oviductal markers such as oviductal glycoprotein 1 and Pax8. These tumors were considered to be poorly differentiated carcinoma. The differential molecular profiles between MOEHIGH and MOELOW were determined using RNA-Seq and confirmed by protein expression to uncover pathways important in transformation, like the p53 pathway, the FOXM1 pathway, WNT signaling, and splicing. MOEHIGH had enhanced protein expression of c-myc, Cyclin E, p53 and FOXM1 with reduced expression of p21. MOEHIGH were also less sensitive to cisplatin and DMBA, which induce lesions typically repaired by base-excision repair. A model of spontaneous tumorogenesis was generated starting with normal oviductal cells. Their transition to cancer involved alterations in pathways associated with high-grade serous cancer in humans

    In vivo tumor growth of high-grade serous ovarian cancer cell lines

    Get PDF
    OBJECTIVE: Genomic studies of ovarian cancer (OC) cell lines frequently used in research revealed that these cells do not fully represent high-grade serous ovarian cancer (HGSOC), the most common OC histologic type. However, OC lines that appear to genomically resemble HGSOC have not been extensively used and their growth characteristics in murine xenografts are essentially unknown. METHODS: To better understand growth patterns and characteristics of HGSOC cell lines in vivo, CAOV3, COV362, KURAMOCHI, NIH-OVCAR3, OVCAR4, OVCAR5, OVCAR8, OVSAHO, OVKATE, SNU119 and UWB1.289 cells were assessed for tumor formation in nude mice. Cells were injected intraperitoneally (i.p.) or subcutaneously (s.c.) in female athymic nude mice and allowed to grow (maximum of 90 days) and tumor formation was analyzed. All tumors were sectioned and assessed using H&E staining and immunohistochemistry for p53, PAX8 and WT1 expression. RESULTS: Six lines (OVCAR3, OVCAR4, OVCAR5, OVCAR8, CAOV3, and OVSAHO) formed i.p xenografts with HGSOC histology. OVKATE and COV362 formed s.c. tumors only. Rapid tumor formation was observed for OVCAR3, OVCAR5 and OVCAR8, but only OVCAR8 reliably formed ascites. Tumors derived from OVCAR3, OVCAR4, and OVKATE displayed papillary features. Of the 11 lines examined, three (Kuramochi, SNU119 and UWB1.289) were non-tumorigenic. CONCLUSIONS: Our findings help further define which HGSOC cell models reliably generate tumors and/or ascites, critical information for preclinical drug development, validating in vitro findings, imaging and prevention studies by the OC research community

    Phenethyisoquinoline alkaloids from the leaves of Androcymbium palaestinum

    Get PDF
    Thirteen compounds were isolated from the methanolic extract of the leaves of Androcymbium palaestinum Baker (Colchicaceae). Of these, three were new, two were new natural products, and eight were known. The new isolated compounds were (+)-1-demethylandrocine (5), (−)-andropalaestine (8), and (+)-2-demethyl-β-lumicolchicone (10), while the new natural products were (+)-O-methylkreysigine-N-oxide (3) and (+)-O,O-dimethylautumnaline (9). Moreover, two known compounds are reported for the first time from this species, specifically (−)-colchicine (11) and (−)-3-demethyldemecolcine (13). The structures of the isolated compounds were elucidated using a series of spectroscopic and spectrometric techniques, principally HRESIMS, 1D-NMR (1H and 13C NMR) and 2D-NMR (COSY, edited-HSQC, and HMBC). ECD spectroscopy was used for assigning the absolute configurations of compounds 3, 5, and 10. The cytotoxic activities of the isolated compounds were evaluated using the MDA-MB-435 (melanoma), MDA-MB-231 (breast), and OVCAR3 (ovary) cancer cell lines. Compound 11 was the most potent against all tested cell lines, with IC50 values of 12, 95 and 23 nM, respectively.This research was supported, in part, by the Deanship of Research, Jordan University of Science and Technology, Irbid, Jordan (Grant No. 258/2017) and the National Cancer Institute/National Institutes of Health, Bethesda, MD, USA via P01 CA125066. We thank Dr. L. Flores Bocanegra, J. M. Gallagher, Z. Y. Al Subeh, and Dr. N. D. Paguigan from UNCG for technical help and valuable suggestions. This work was performed in part at the Joint School of Nanoscience and Nanoengineering, a member of the Southeastern Nanotechnology Infrastructure Corridor (SENIC) and National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (Grant ECCS-1542174)

    Silvestrol induces early autophagy and apoptosis in human melanoma cells

    Full text link
    BACKGROUND: Silvestrol is a cyclopenta[b]benzofuran that was isolated from the fruits and twigs of Aglaia foveolata, a plant indigenous to Borneo in Southeast Asia. The purpose of the current study was to determine if inhibition of protein synthesis caused by silvestrol triggers autophagy and apoptosis in cultured human cancer cells derived from solid tumors. METHODS: In vitro cell viability, flow cytometry, fluorescence microscopy, qPCR and immunoblot was used to study the mechanism of action of silvestrol in MDA-MB-435 melanoma cells. RESULTS: By 24 h, a decrease in cyclin B and cyclin D expression was observed in silvestrol-treated cells relative to control. In addition, silvestrol blocked progression through the cell cycle at the G(2)-phase. In silvestrol-treated cells, DAPI staining of nuclear chromatin displayed nucleosomal fragments. Annexin V staining demonstrated an increase in apoptotic cells after silvestrol treatment. Silvestrol induced caspase-3 activation and apoptotic cell death in a time- and dose-dependent manner. Furthermore, both silvestrol and SAHA enhanced autophagosome formation in MDA-MB-435 cells. MDA-MB-435 cells responded to silvestrol treatment with accumulation of LC3-II and time-dependent p62 degradation. Bafilomycin A, an autophagy inhibitor, resulted in the accumulation of LC3 in cells treated with silvestrol. Silvestrol-mediated cell death was attenuated in ATG7-null mouse embryonic fibroblasts (MEFs) lacking a functional autophagy protein. CONCLUSIONS: Silvestrol potently inhibits cell growth and induces cell death in human melanoma cells through induction of early autophagy and caspase-mediated apoptosis. Silvestrol represents a natural product scaffold that exhibits potent cytotoxic activity and could be used for the further study of autophagy and its relationship to apoptosis in cancer cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-015-1988-0) contains supplementary material, which is available to authorized users

    In vivo imaging of molecular targets and their function in endocrinology

    No full text

    Models for measuring metabolic chemical changes in the metastasis of high grade serous ovarian cancer: fallopian tube, ovary, and omentum

    No full text
    Ovarian cancer (OC) is the most lethal gynecologic malignancy and high grade serous ovarian cancer (HGSOC) is the most common and deadly subtype, accounting for 70-80% of OC deaths. HGSOC has a distinct pattern of metastasis as many believe it originates in the fallopian tube and then it metastasizes first to the ovary, and later to the adipose-rich omentum. Metabolomics has been heavily utilized to investigate metabolite changes in HGSOC tumors and metastasis. Generally, metabolomics studies have traditionally been applied to biospecimens from patients or animal models; a number of recent studies have combined metabolomics with innovative cell-culture techniques to model the HGSOC metastatic microenvironment for the investigation of cell-to-cell communication. The purpose of this review is to serve as a tool for researchers aiming to model the metastasis of HGSOC for metabolomics analyses. It will provide a comprehensive overview of current knowledge on the origin and pattern of metastasis of HGSOC and discuss the advantages and limitations of different model systems to help investigators choose the best model for their research goals, with a special emphasis on compatibility with different metabolomics modalities. It will also examine what is presently known about the role of small molecules in the origin and metastasis of HGSOC
    • …
    corecore