166 research outputs found
Emergency Portacaval Shunt Versus Rescue Portacaval Shunt in a Randomized Controlled Trial of Emergency Treatment of Acutely Bleeding Esophageal Varices in Cirrhosis—Part 3
Emergency treatment of bleeding esophageal varices in cirrhosis is of singular importance because of the high mortality rate. Emergency portacaval shunt is rarely used today because of the belief, unsubstantiated by long-term randomized trials, that it causes frequent portal-systemic encephalopathy and liver failure. Consequently, portacaval shunt has been relegated solely to salvage therapy when endoscopic and pharmacologic therapies have failed. Question: Is the regimen of endoscopic sclerotherapy with rescue portacaval shunt for failure to control bleeding varices superior to emergency portacaval shunt? A unique opportunity to answer this question was provided by a randomized controlled trial of endoscopic sclerotherapy versus emergency portacaval shunt conducted from 1988 to 2005.
Unselected consecutive cirrhotic patients with acute bleeding esophageal varices were randomized to endoscopic sclerotherapy (n = 106) or emergency portacaval shunt (n = 105). Diagnostic workup was completed and treatment was initiated within 8 h. Failure of endoscopic sclerotherapy was defined by strict criteria and treated by rescue portacaval shunt (n = 50) whenever possible. Ninety-six percent of patients had more than 10 years of follow-up or until death.
Comparison of emergency portacaval shunt and endoscopic sclerotherapy followed by rescue portacaval shunt showed the following differences in measurements of outcomes: (1) survival after 5 years (72% versus 22%), 10 years (46% versus 16%), and 15 years (46% versus 0%); (2) median post-shunt survival (6.18 versus 1.99 years); (3) mean requirements of packed red blood cell units (17.85 versus 27.80); (4) incidence of recurrent portal-systemic encephalopathy (15% versus 43%); (5) 5-year change in Child’s class showing improvement (59% versus 19%) or worsening (8% versus 44%); (6) mean quality of life points in which lower is better (13.89 versus 27.89); and (7) mean cost of care per year (216,700). These differences were highly significant in favor of emergency portacaval shunt (all p < 0.001).
Emergency portacaval shunt was strikingly superior to endoscopic sclerotherapy as well as to the combination of endoscopic sclerotherapy and rescue portacaval shunt in regard to all outcome measures, specifically bleeding control, survival, incidence of portal-systemic encephalopathy, improvement in liver function, quality of life, and cost of care. These results strongly support the use of emergency portacaval shunt as the first line of emergency treatment of bleeding esophageal varices in cirrhosis
Astrobiological Complexity with Probabilistic Cellular Automata
Search for extraterrestrial life and intelligence constitutes one of the
major endeavors in science, but has yet been quantitatively modeled only rarely
and in a cursory and superficial fashion. We argue that probabilistic cellular
automata (PCA) represent the best quantitative framework for modeling
astrobiological history of the Milky Way and its Galactic Habitable Zone. The
relevant astrobiological parameters are to be modeled as the elements of the
input probability matrix for the PCA kernel. With the underlying simplicity of
the cellular automata constructs, this approach enables a quick analysis of
large and ambiguous input parameters' space. We perform a simple clustering
analysis of typical astrobiological histories and discuss the relevant boundary
conditions of practical importance for planning and guiding actual empirical
astrobiological and SETI projects. In addition to showing how the present
framework is adaptable to more complex situations and updated observational
databases from current and near-future space missions, we demonstrate how
numerical results could offer a cautious rationale for continuation of
practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo
CSR, co-optation and resistance: the emergence of new agnostic relations between business and civil society
This article examines the theoretical implications of the changing relationships between NGOs and businesses that have emerged as a response to the evolving agenda around CSR and sustainable development. In particular, it focuses upon examining whether greater engagement from non-governmental organisations (NGOs) in this area reflects a process of appropriation and co-optation of protest by the business community. To examine this process, the article considers two forms of appropriation—appropriation of language and appropriation via participation—as a basis for discussion. While co-optation pressures are identified within both areas, the article argues that co-optation is identified almost as an inevitable outcome of engagement without significant consideration of the ability of movements to identify and respond to these processes. In identifying an alternative approach, the article utilises Mouffe’s framework of agonistic pluralism. Mouffe’s framework, it is argued, provides an understanding of the way in which agonistic relationships are emerging between NGOs and businesses while highlighting the continuance of conflict between parties struggling to influence the contested interpretations of responsible business
Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer
INTRODUCTION
Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice.
METHODS
More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account.
RESULTS
The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working.
CONCLUSIONS
With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years
High Throughput Microplate Respiratory Measurements Using Minimal Quantities Of Isolated Mitochondria
Recently developed technologies have enabled multi-well measurement of O2 consumption, facilitating the rate of mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism. Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a multi-well tissue culture plate. In order to have a high throughput assay system in which both energy demand and substrate availability can be tightly controlled, we have developed a protocol to expand the application of the XF24 Analyzer to include isolated mitochondria. Acquisition of optimal rates requires assay conditions that are unexpectedly distinct from those of conventional polarography. The optimized conditions, derived from experiments with isolated mouse liver mitochondria, allow multi-well assessment of rates of respiration and proton production by mitochondria attached to the bottom of the XF assay plate, and require extremely small quantities of material (1–10 µg of mitochondrial protein per well). Sequential measurement of basal, State 3, State 4, and uncoupler-stimulated respiration can be made in each well through additions of reagents from the injection ports. We describe optimization and validation of this technique using isolated mouse liver and rat heart mitochondria, and apply the approach to discover that inclusion of phosphatase inhibitors in the preparation of the heart mitochondria results in a specific decrease in rates of Complex I-dependent respiration. We believe this new technique will be particularly useful for drug screening and for generating previously unobtainable respiratory data on small mitochondrial samples
Characterisation and internalisation of recombinant humanised HMFG-1 antibodies against MUC1
The humanised HMFG-1 immunoglobulin has been extensively developed as a clinical immunotherapeutic agent for MUC1 expressing tumours. We have constructed a single-chain Fv (scFv) and Fab fragment from this antibody and shown that both these species retain their specificity for MUC1. The scFv was less stable and less soluble than the Fab. Detailed analyses of the binding kinetics of the whole IgG and Fab fragment show that the affinity for MUC1 synthetic peptides is low (approximately 100 n for the IgG and 10 μ for the Fab), with particularly low but similar dissociation rate constants (0.031–0.095 s−1). Binding to native antigen on the cell surface is over two orders of magnitude better. Confocal immunofluorescence microscopy shows that both the IgG and Fab are internalised rapidly (the IgG is internalised within 15 min) and colocalise to early endosomes. This work provides an appreciation of the binding, internalising and trafficking kinetics, important for the development of future therapeutics based on this antibody
RBR ligase–mediated ubiquitin transfer: a tale with many twists and turns
RBR ligases are an enigmatic class of E3 ubiquitin ligases that combine properties of RING and HECT-type E3s and undergo multilevel regulation through autoinhibition, post-translational modifications, multimerization and interaction with binding partners. Here, we summarize recent progress in RBR structures and function, which has uncovered commonalities in the mechanisms by which different family members transfer ubiquitin through a multistep process. However, these studies have also highlighted clear differences in the activity of different family members, suggesting that each RBR ligase has evolved specific properties to fit the biological process it regulates
- …