3,928 research outputs found
Technique for improving hydrodynamic gyro bearings
Conical or spherical, spirally grooved grease bearings have an inclined surface which is machined inboard of the grooved surface. The indentation and inclined surface provide a reservoir for forced out lubricant, and when rotation begins, centrifugal force returns the lubricant to the grooved area
Field theory for a reaction-diffusion model of quasispecies dynamics
RNA viruses are known to replicate with extremely high mutation rates. These
rates are actually close to the so-called error threshold. This threshold is in
fact a critical point beyond which genetic information is lost through a
second-order phase transition, which has been dubbed the ``error catastrophe.''
Here we explore this phenomenon using a field theory approximation to the
spatially extended Swetina-Schuster quasispecies model [J. Swetina and P.
Schuster, Biophys. Chem. {\bf 16}, 329 (1982)], a single-sharp-peak landscape.
In analogy with standard absorbing-state phase transitions, we develop a
reaction-diffusion model whose discrete rules mimic the Swetina-Schuster model.
The field theory representation of the reaction-diffusion system is
constructed. The proposed field theory belongs to the same universality class
than a conserved reaction-diffusion model previously proposed [F. van Wijland
{\em et al.}, Physica A {\bf 251}, 179 (1998)]. From the field theory, we
obtain the full set of exponents that characterize the critical behavior at the
error threshold. Our results present the error catastrophe from a new point of
view and suggest that spatial degrees of freedom can modify several mean field
predictions previously considered, leading to the definition of characteristic
exponents that could be experimentally measurable.Comment: 13 page
Transforming growth factor-b regulation of proteoglycan synthesis in vascular smooth muscle: Contribution to lipid binding and accelerated atherosclerosis in diabetes
Atherosclerosis is accelerated in the setting of diabetes, but the factors driving this phenomenon remain elusive. Hyperglycemia leads to elevated levels of transforming growth factor (TGF)-b and TGF-b has been implicated as a factor in atherosclerosis. Given the established association between hyperglycemia and elevated TGF-b, it is plausible that elevated TGF-b levels in diabetes play a pathogenic role in the development of accelerated atherosclerosis. TGF-b is a potent regulator of extracellular matrix synthesis, including many actions on proteoglycan synthesis that lead to increased binding to low-density lipoprotein and therefore potentially increased lipid retention in the vessel wall and accelerated atherosclerosis. TGF-b signals through the canonical TGF-b receptor I-mediated phosphorylation of Smad transcription factors and TGF-b signaling is also known to involve, positively and negatively, interactions with the mitogen-activated protein kinase pathways. The focus of the present review is on the effects of TGF-b on proteoglycan synthesis in vascular smooth muscle and particularly the signaling pathways through which TGF-b exerts its effects, because those pathways may be therapeutic targets for the prevention of pathological modifications in the proteoglycan component of the vessel wall in the vascular diseases of diabetes
Recommended from our members
Controls on development and diversity of Early Archean stromatolites
The ≈3,450-million-year-old Strelley Pool Formation in Western Australia contains a reef-like assembly of laminated sedimentary accretion structures (stromatolites) that have macroscale characteristics suggestive of biological influence. However, direct microscale evidence of biology—namely, organic microbial remains or biosedimentary fabrics—has to date eluded discovery in the extensively-recrystallized rocks. Recently-identified outcrops with relatively good textural preservation record microscale evidence of primary sedimentary processes, including some that indicate probable microbial mat formation. Furthermore, we find relict fabrics and organic layers that covary with stromatolite morphology, linking morphologic diversity to changes in sedimentation, seafloor mineral precipitation, and inferred microbial mat development. Thus, the most direct and compelling signatures of life in the Strelley Pool Formation are those observed at the microscopic scale. By examining spatiotemporal changes in microscale characteristics it is possible not only to recognize the presence of probable microbial mats during stromatolite development, but also to infer aspects of the biological inputs to stromatolite morphogenesis. The persistence of an inferred biological signal through changing environmental circumstances and stromatolite types indicates that benthic microbial populations adapted to shifting environmental conditions in early oceans
Multifrequency VLA observations of the FR I radio galaxy 3C 31: morphology, spectrum and magnetic field
We present high-quality VLA images of the FR I radio galaxy 3C 31 in the
frequency range 1365 to 8440 MHz with angular resolutions from 0.25 to 40
arcsec. Our new images reveal complex, well resolved filamentary substructure
in the radio jets and tails. We also use these images to explore the spectral
structure of 3C 31 on large and small scales. We infer the apparent magnetic
field structure by correcting for Faraday rotation. Some of the intensity
substructure in the jets is clearly related to structure in their apparent
magnetic field: there are arcs of emission where the degree of linear
polarization increases, with the apparent magnetic field parallel to the ridges
of the arcs. The spectral indices are significantly steeper (0.62) within 7
arcsec of the nucleus than between 7 and 50 arcsec (0.52 - 0.57). The spectra
of the jet edges are also slightly flatter than the average for their
surroundings. At larger distances, the jets are clearly delimited from
surrounding larger-scale emission both by their flatter radio spectra and by
sharp brightness gradients. The spectral index of 0.62 in the first 7 arcsec of
3C 31's jets is very close to that found in other FR I galaxies where their
jets first brighten in the radio and where X-ray synchrotron emission is most
prominent. Farther from the nucleus, where the spectra flatten, X-ray emission
is fainter relative to the radio. The brightest X-ray emission from FR I jets
is therefore not associated with the flattest radio spectra, but with a
particle-acceleration process whose characteristic energy index is 2.24. The
spectral flattening with distance from the nucleus occurs where our
relativistic jet models require deceleration, and the flatter-spectra at the
jet edges may be associated with transverse velocity shear. (Slightly abridged)Comment: 17 pages, 13 figures, accepted for publication in MNRA
- …