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Abstract        
 
Atherosclerosis is accelerated in the setting of diabetes but the factors driving this 

phenomenon remain elusive. Hyperglycemia leads to elevated levels of transforming 

growth factor-β (TGF-β) and TGF-β has been implicated as a factor in atherosclerosis. 

Given the established association between hyperglycemia and elevated TGF-β it is 

plausible that elevated TGF-β levels in diabetes play a pathogenic role in the 

development of accelerated atherosclerosis in diabetes. TGF-β is a potent regulator of 

extracellular matrix synthesis, including many actions on proteoglycan synthesis 

which lead to increased binding to LDL and therefore potentially increased lipid 

retention in the vessel wall and accelerated atherosclerosis. TGF-β signals through the 

canonical TGF-β receptor I (TβRI/Alk V) mediated phosphorylation of Smad 

transcription factors and is also known to involve, positively and negatively, 

interactions with the Mitogen Activated Protein (MAP) kinase pathways. This review 

will focus on the effects of TGF-β on proteoglycan synthesis in vascular smooth 

muscle and particularly the signaling pathways through which TGF-β exerts its effects 

because those pathways may be therapeutic targets for the prevention of pathological 

modifications in the proteoglycan component of the vessel wall in the vascular 

diseases of diabetes. 
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Introduction 

Cardiovascular disease is the largest single cause of premature mortality in 

developed nations 1. World-wide increases in obesity, metabolic syndrome and 

diabetes are driving higher rates of cardiovascular disease 2,3. Individuals with 

diabetes have numerous acute issues such as hypoglycemic events however the main 

impact of diabetes on health is through the development of its microvascular 

(retinopathy, nephropathy, neuropathy and impotency) and macrovascular 

(myocardial infarction, stroke) complications 4,5. The major manifestation of 

cardiovascular disease or coronary artery disease is an acute myocardial infarction 

leading to death or subsequently heart failure. Atherosclerosis, the underlying 

pathology of macrovascular disease, is accelerated by the plasma milieu and other 

factors associated with diabetes resulting in higher levels of cardiovascular disease in 

this group 6,7.  Acute ischemic events have a more profound effect in people with 

diabetes because of the more pervasive vascular disease and the higher susceptibility 

of the myocardium to the effects of ischemia 8,9. The underlying pathology is 

atherosclerosis, the slow accumulation of cholesterol in the sub-endothelium of the 

artery wall and the development over several decades of complex lesions termed 

plaques 7,10-14. Some plaques are labile and the rupture of such so-called vulnerable 

plaques leads to the adverse clinical event 15,16. The extended risk factors include 

cigarette smoking, hypertension, hyperlipidemia and hyperglycemia and non-

modifiable factors such as age and genetic predisposition 17. Medical therapies are 

based on lowering risk factors and anti-hypertensives and anti-hyperlipidemia agents 

are quite efficacious 18,19. The role of glucose and hyperglycemia in driving 

accelerated atherosclerosis and increased rates of CVD are well established both 

epidemiologically 20 and investigationally such as the recent study of Intravascular 
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Ultrasound (IVUS) of plaque progression in people with diabetes 21.  However, in 

contrast to the established efficacy of agents which lower plasma cholesterol and 

blood pressure the role of anti-hyperglycemic agents in preventing cardiovascular 

disease is highly controversial 22,23. The reasons for this are most perplexing 24.  Thus, 

in spite of multiple therapies, rates of cardiovascular events are still high and a better 

understanding of the drivers of atherosclerosis in the setting of diabetes is required 

and this will hopefully lead to the identification of new targets and ultimately new 

treatment modalities. 

There are several theories in relation to the origins of atherosclerosis. These 

include the Response to Injury hypothesis of Ross and Glomset 25, Response to 

Retention Hypothesis of Tabas, Williams and later Boren 13,26, the oxidation 

hypothesis 27and the role of hyperglycemia and Advanced Glycation End (AGE) 

products 28,29. The major processes initiating atherosclerosis are the initial deposition 

and accumulation of lipid in the vessel wall 30 and the subsequent inflammatory 

response which ultimately generates the complex and sometimes labile plaques 

11,12,15,16. Nakashima et al. 31 demonstrated that in human coronary arteries the 

deposition of lipid occurs before the inflammatory response and the deposited 

apolipoproteins associated with the lipid co-localize with proteoglycans specifically 

biglycan and decorin 31. Thus the extracellular matrix and in particular the lipid-

binding proteoglycan component is altered in the neointima of atherosclerosis 

susceptible arteries and it forms the permissive environment for the initiation of 

atherosclerosis 14,32,33. Whether or not the initial lipid retention by proteoglycans is the 

forerunner of the inflammatory response or the inflammatory response is independent 

is unknown. The former alternative seems more likely and if so then proteoglycan to 
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lipid interaction is integral to the initiation of atherosclerosis and potentially 

represents a therapeutic target for the prevention of the disease process 34,35.  

The impact of the factors associated with diabetes on the production of 

proteoglycans by VSMCs has been investigated in detail by Tannock, Little and 

colleagues 36-39. Surprisingly, many of the obvious factors, including hyperglycemia, 

have no effect on proteoglycan synthesis and structure under the conditions so far 

investigated 36,37. Glucosamine, investigated as a component of the hexosamine 

pathway, has the potential to act as a precursor for glycosaminoglycan (GAG) 

synthesis and thus increase proteoglycan and GAG chain synthesis 40. Our studies 

actually found that it has the opposite effect and exogenous glucosamine causes 

concentration dependent inhibition of GAG elongation 36 which we later showed to be 

due to competition with glucose uptake leading to cellular ATP depletion 38. Elevated 

free fatty acids are a component of the early dysmetabolic status of diabetes 41 and 

free fatty acids also have a modest effect on proteoglycan synthesis in VSMC 42.  

The major effect of the diabetic milieu appears to be indirect due to the action of 

high glucose concentrations to stimulate the secretion of TGF-β 37,43. The 

hyperglycemia in patients with Type 2 diabetes leads to increased renal production of 

TGF-β 43. TGF-β is a potent regulator of extracellular matrix synthesis, including 

many actions on proteoglycan synthesis 39,44-47.  TGF-β induces changes in the 

proteoglycans secreted by VSMCs leading to increased binding to LDL 39 and 

therefore potentially increased lipid retention in the vessel wall and accelerated 

atherosclerosis 14. TGF-β has been implicated in many diseases including tumor 

metastasis and renal and cardiac fibrosis 48-50. Hyperglycemia has also been linked to 

activation of TGF-β signaling pathways regulating processes associated with the 

complications of diabetes 51. TGF-β is strongly implicated in atherosclerosis and it is 
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highly expressed in atherosclerotic plaques (see Fig. 1). TGF-β and its receptors are 

present in atherosclerotic lesions 52 and play an important role in regulating vessel 

proteoglycan synthesis and lipoprotein retention 52,53. Thus, given the established 

association between hyperglycemia and elevated TGF-β 43, it is plausible that elevated 

TGF-β levels in diabetes plays a pathogenic role in the development of accelerated 

atherosclerosis in diabetes. On this basis we have reviewed the actions of TGF-β on 

proteoglycan synthesis in VSMC as a surrogate for the effects of the diabetic milieu 

on the vascular extracellular matrix. This review will focus on the effects of TGF-β on 

proteoglycan synthesis in vascular smooth muscle and particularly the signaling 

pathways through which TGF-β exerts its effects because those pathways may be 

therapeutic targets for the prevention of pathological modifications in the 

proteoglycan component of the vessel wall in diabetic vascular disease. 

 

TGF-β and TGF-β receptors 

TGF-β is a multifunctional growth factor that controls cellular processes 

involved in proliferation, differentiation, apoptosis, extracellular matrix accumulation 

and the immune system  49,50,54. The TGF-β superfamily of ligands include: Bone 

morphogenetic proteins (BMPs), Growth and differentiation factors (GDFs), Anti-

müllerian hormone (AMH), Activin, Nodal and TGF-βs 55.  TGF-β is a secreted 

protein that exists in three isoforms called TGF-β1, TGF-β2 and TGF-β3. Three 

isoforms are highly conserved in mammals, and deletion of the isoforms in mice leads 

to distinct phenotypes 56-58. All three TGF-βs are synthesized as precursor molecules 

containing an N-terminal propeptide region in addition to the TGF-β homodimer 59. 

The N-terminal signal peptide (propeptide region) consists of a 20-30 amino acid 

domain called latency associated peptide (LAP) required for secretion from the cell 
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and a 112-114 amino acid C-terminal region that becomes the mature TGF-β 

molecule following its release from the propeptide region by proteolytic cleavage 60. 

TGF-β homodimer interacts with a LAP forming a complex called Small Latent 

Complex (SLC). This complex remains in the cell until it is bound by a protein called 

Latent TGF-β-Binding Protein (LTBP), forming a larger complex called Large Latent 

Complex (LLC). It is LLC that get secreted to the extracellular matrix 61. In most 

cases, before the LLC is secreted, the TGF-β precursor is cleaved from the propeptide 

but remains attached to it by noncovalent bonds 62. After its secretion, it remains in 

the extracellular matrix as an inactivated complex containing both the LTBP and the 

LAP which need to be further processed in order to release active TGF-β 63. 

TGF-β receptors are the major family of cell surface receptors which are 

serine/threonine kinases but they also possess weak tyrosine kinase activity 64. They 

exist in several different isoforms that can be homo- or heterodimeric 65. Receptor 

types I (TβRI) and II (TβRII) are signaling receptors consisting of an N-terminal 

extracellular ligand binding domain, a transmembrane region and a C-terminal 

serine/threonine kinase domain. TβRI , but not TβRII receptors contain a GS domain 

(cytosolic and immediately N-terminal to the kinase domain) which consists of a 

series of about thirty glycine-serine repeats 54. TGF-β receptor type III is the most 

abundant and a non-signaling receptor which plays a role in transferring TGF-β to its 

signaling receptors and has a high affinity for both TGF-β1 and TGF-β2 66. Type III 

receptors are membrane proteoglycans that carry heparan and chondroitin sulfate 

GAG chains. The binding site for TGF-β resides in the 100-120-kDa core polypeptide 

of this receptor. The type III receptor is highly sensitive to cleavage by trypsin. 

Trypsin action releases the GAG-containing domain of the receptor leaving a 60-kDa 

membrane-associated domain that contains the cross-linked ligand 66. 
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In mammals there are seven known type I receptors and five type II receptors 67. 

Signaling begins with a TGF-β ligand binding to a constituitively active type II 

receptor dimer, which recruits a type I receptor dimer forming a hetero-tetrameric 

complex with the ligand on the cell surface. The binding of a TGF-β family ligand 

causes the rotation of the receptors so that their cytoplasmic kinase domains are 

arranged in a catalytically favorable orientation. This enables the type II receptor to 

phosphorylate multiple serine and threonine residues in the GS region of the type I 

receptor.  

TGF-β signals via the TβRI/Alk V receptor and the canonical Smad pathway 

involving extreme C-terminal phosphorylation of receptor-regulated (R)-Smad 

transcription factors and translocation of Smad complexes to the nucleus where they 

regulate transcription 50,54. TβRI can also activate Mitogen Activated Protein (MAP) 

kinases leading to the phosphorylation of R-Smads in their linker region, a response 

that can inhibit or promote TGF-β signaling 68. The latter pathway is known 

somewhat incongruously as non-Smad or Smad independent signaling 

notwithstanding that it involves ultimately Smad phosphorylation. 

 

The Smad family and TGF-β signaling via phosphorylation of Smad carboxyl 

terminal 

The activated type I receptor phosphorylates cytoplasmic proteins of the C-

terminal regions of Smad family. Smads are a class of proteins that modulate the 

activity of TGF-β ligands and consist of three domains: (1) an N-terminal Mad-

homology 1 (MH1) domain which carries nuclear localization signals (NLS) and a 

DNA-binding domain; (2) a linker region of variable sequence and length that interact 

with prolyl-isomerases and ubiquitin ligases;  (3) a C-terminal MH2 domain which 
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binds to type I receptor and mediates Smad homo- and hetero-oligomerization as well 

as mediates the transactivation of nuclear Smad complexes 69. There are three classes 

of Smad: (1) the receptor-regulated Smads (R-Smad) which include Smad1, Smad2, 

Smad3, Smad5 and Smad9 (sometimes referred to as Smad8) 70; (2) the common-

mediator Smad (co-Smad) which includes only Smad4, which interacts with R-Smads 

to participate in signaling 71;  (3) The antagonistic or inhibitory Smads (I-Smad) which 

include Smad6 and Smad7, which block the activation of R-Smads and Co-Smads and 

can also signal-terminating initiate degradation 72. There are five receptor regulated 

Smads. TGF-βs, Activins, Nodals and some GDFs are mediated by Smad2 and Smad3, 

while BMPs, AMH and a few GDFs are mediated by Smad1, Smad5 and Smad9.  

The C-terminal phosphorylation of receptor activated R-Smads allows them to 

bind the   co-Smad, Smad 4. This resulting R-Smad/co-Smad complex which consist 

of trimers of two R-Smads and one Smad4, is then imported into the nucleus where 

they act as transcription factors and participate in the regulation of target gene 

expression 50. 

 

TGF-β signaling via phosphorylation of the Smad2 linker region  

TGF-β signaling is also known to involve positively and negatively in 

interaction with Mitogen Activated Protein (MAP)/ Extracellular signal-Regulated 

Kinases (ERK) pathway 50,54,73. TGF-β stimulates the phosphorylation of ERK1/2 73; 

the activated ERK then phosphorylates Smad2 on threonine residues and possibly 

serine residues in the linker region which can induce the expression of the inhibitory 

I-Smads, Smad 6 and Smad7, that can hinder the translocation of the Smad2 into the 

nucleus and resistance to TGF-β signaling 73.  
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Proteoglycans  

Proteoglycans are glycosylated proteins which have covalently attached highly 

anionic GAGs 74. Many forms of proteoglycans are present in all extracellular 

matrices of connective tissues including the blood vessel wall, where they are a 

component of the extracellular matrix as well as a cell-surface component of vascular 

cells. The major biological function of proteoglycans derives from the 

physicochemical characteristics of the core protein and carbohydrate components of 

the molecule. Core proteins determine the cellular location and serve as scaffolds for 

the GAG chains and the highly ionic chains determine physical properties of tissues 

and bind factors including growth factors and apolipoproteins.  The GAG chains are 

long, linear carbohydrate polymers that are highly negatively charged under 

physiological conditions, due to the occurrence of sulfate and uronic acid groups. The 

complementary roles of core protein and GAG are exemplified by the observation that 

binding of low-density lipoprotein (LDL) to GAG chains of intact proteoglycans 

occurs with an order of magnitude higher affinity than the binding to free GAG chains 

75.   

Proteoglycans can be categorized depending upon the nature of their GAG 

chains.  These chains may be: chondroitin sulfate, decorin sulfate, heparan sulfate and 

keratan sulfate. Proteoglycans have distinct biological functions and their involvement 

in many aspects of cell and tissue activities has been demonstrated. For example, 

aggrecan, forms a substantial structural component of cartilage and is composed of 

both decorin sulfate and keratan sulfate GAG chains. Large chondroitin sulfate 

proteoglycan, versican, is prominent in blood vessels 76. The smaller leucine-rich 

proteoglycans includes biglycan and decorin, which are widely distributed in many 

connective tissues, may have functions in regulating collagen fibril formation and in 
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modifying the activity of TGF-β 77. Perlecan, the major heparan sulfate proteoglycan 

in the glomerular basement membrane, may play an important role as the major 

anionic site responsible for the charge selectivity in glomerular filtration 78.  

Vascular smooth muscle cells isolated and passaged from human vessels, secrete 

predominantly the small chondroitin/decorin sulfate proteoglycans: biglycan, decorin, 

lesser amounts of versican and heparan sulfate proteoglycan, perlecan 79. TGF-β 75 

and oxidized LDL 80 regulate the GAG chains elongation and the proportion of the 

chondroitin/decorin sulfate proteoglycans in the component mixture of secreted 

proteoglycans. These effects lead to enhanced binding of proteoglycans to atherogenic 

apolipoproteins 81. In the initiation of atherosclerosis, the growth factor-modified 

biglycan with elongated GAG chains has been termed by us as “hyperelongated 

biglycan” 25. The modifications to GAGs on chondroitin sulfate and decorin sulfate 

proteoglycans increases the binding of GAGs to apolipoproteins 75,81,82; the hydrolytic 

and proteolytic modifications of apolipoproteins increase the binding strength of 

GAGs to LDL 80,83.   

 

Actions of TGF-β on proteoglycan synthesis in vascular smooth 

muscle 

Actions of TGF-β on proteoglycan synthesis 

TGF-β stimulates proteoglycan synthesis, specifically the expression of biglycan 

and an elongation of its decorin sulfate (DS) GAG chains and this results in an 

increased binding of the proteoglycan to LDL 39,44,46,47. In very early studies, Wight 

and colleagues 44,45 found that TGF-β causes a 3.3-fold increase in radiosulfate 

incorporation into biglycan in monkey arterial smooth muscle cells, but as expected it 
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had no effect on core protein size. Northern blotting analysis also revealed a more 

than two fold increase in biglycan mRNA expression 45. TGF-β had no appreciable 

effect on decorin core protein synthesis or GAG elongation on decorin 45. We have 

confirmed and extended these findings in human VSMCs 46,47. TGF-β increases 

radiosulfate incorporation into biglycan, associated with a marked increase in 

proteoglycan size which is specifically associated with an increase in the size of the 

GAG chains 39,47. TGF-β also increases [35S]-methionine/cysteine incorporation 

indicating an increase in core protein synthesis 46 and consistent with the induction of 

biglycan mRNA first described by Schonherr et al. 45. All responses to TGF-β are 

concentration-dependently inhibited by the TβRI/Alk V inhibitor SB431542 

indicating that they arise from TβRI/Alk V 46.  

 

TGF-β receptor signaling pathway regulating biglycan synthesis  

TGF-β can also activate MAP kinases leading to downstream signaling 

completely independent of Smads but also causing phosphorylation of Smads in the 

linker region 50 a response originally associated with the inhibition of Smad 

translocation to the nucleus and this is antagonistic to TGF-β signaling 73. We recently 

investigated the ability of TGF-β to stimulate the phosphorylation of p38, 

Extracellular signal-Regulated Kinases (ERK) and Jun N-terminal Kinase (JNK) 

MAP kinases as well as Smad2 phosphorylation at both its C-terminal and in the 

linker region 47. TGF-β stimulated the phosphorylation of all three MAP kinases 47. 

Pharmacological inhibition of ERK and p38 MAP kinase blocked TGF-β mediated 

GAG elongation and expression of biglycan whereas inhibition of JNK had no effect. 

Inhibition of ERK and p38 but not JNK MAP kinases attenuated the effect of TGF-β 

to increase phosphorylation of Smad2 linker region 47. High levels of phosphorylation 
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of Smad2 linker region were detected in a nuclear fraction of TGF-β treated cells 

implying that this response was not antagonistic to TGF-β signaling. Thus, TGF-β 

signaling via ERK and p38 MAP kinases and leading to the phosphorylation of the 

linker region of Smad2 mediates its effects of TGF-β on biglycan synthesis and GAG 

elongation in human vascular smooth muscle cells 47. We have also demonstrated that 

the size of the effect mediated by the signaling pathways is sufficient to alter binding 

to LDL because the binding of radiolabelled proteoglycans to normal human LDL is 

reduced in proteoglycan harvested from cells treated with inhibitors of the TGF-β 

receptor (TβRI) or p38 MAP kinase 46. 

 

Consequences of TGF-β stimulated proteoglycan synthesis: increased 

lipid binding  

TGF-β has two actions on proteoglycan synthesis which can enhance the 

atherogenicity of the extracellular matrix. TGF-β  stimulates the expression of 

biglycan which is the proteoglycan most closely associated  with lipid binding in early 

human atherosclerosis 30 and TGF-β also stimulates the elongation of GAG chains 

leading to hyperelongated chains which show enhances binding in to LDL 14,39,84.  

Highly anionic (sulfated and carboxylated) GAG chains on proteoglycans bind to a 

multitude of molecules but practically and of interest to the development of 

atherosclerosis they bind to cationic residues on the apolipoproteins (B100) on human 

LDL 85,86.  Lipids bind to the GAGs in the vessel wall 87. Due to the complex nature of 

the interacting species it is difficult to describe the interaction in classical 

receptor-binding terms but when an equal quantity of radiolabelled proteoglycan core 

proteins from control and TGF-β treated cells is added to an in vitro gel mobility shift 
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assay then the latter show higher affinity binding as evidenced by a shift to the left of 

the binding isotherm 39. The rate limiting step for  passages of lipoproteins through the 

vessel wall is the release from the wall to the lymph so an increase in binding affinity 

will delay the transition of the lipid and ultimately induce the inflammatory response 

that generates the complex plaques 88.  

As described above, TGF-β signaling involves Smad transcription factors acting 

through the canonical C terminal phosphorylation pathways but also as shown 

recently by us potentially via the TGF-β-stimulated MAP kinase (p38 and Erk) 

mediated phosphorylation of the linker region of Smad2 47. Multiple other hormones 

and growth factors activate MAP kinases in VSMCs and these have the potential to 

cause Smad linker phosphorylation. Such a response might synergize with the actions 

of TGF-β in diabetes and indeed we have reported that the actions of TGF-β and 

PDGF are additive in causing GAG elongation on biglycan 34 and by extrapolation 

causing increased binding to LDL. Thus, hyperglycemia driven increased level of 

TGF-β can synergize with other factors known to be elevated in diabetes to drive 

hyperelongation of GAG chains on lipid binding proteoglycans (see schema in Fig. 2) 

and thus has the potential to be the driving factor and the link between hyperglycemia 

and accelerated development of atherosclerosis in diabetes 89 

 

Conclusions 

Proteoglycans are complex molecules being comprised of both protein and 

carbohydrate moieties. These entities have completely different synthetic processes 

consistent with normal cell biology of the synthesis of proteins and GAGs 40,90. All of 

these features can be involved in pathology because growth factors can alter the 
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proteoglycan composition of the extracellular matrix by altering the relative 

expression of proteoglycan core proteins or independently by causing the elongation 

of the GAG chains, known as hyperelongation 14. Each of these processes regulating 

core proteins and GAG synthesis is activated by signaling pathways which are 

sometimes similar but can also be completely distinct 91. Considerable progress has 

been made in revealing the signaling pathways that control the synthesis and structure 

of proteoglycans in vascular smooth muscle from the hormone and growth factors 

39,92-94, metabolic factors 36 through to the involvement of transcription factors 95 that 

regulate the genes that control growth factor stimulated proteoglycan synthesis. 

Amongst these factors TGF-β is one of the most prominent activators of proteoglycan 

syntheses and it leads to increased binding to LDL. Given the established association 

between hyperglycemia and elevated TGF-β we have speculated that elevated TGF-β 

levels in diabetes play a pathogenic role in the development of accelerated 

atherosclerosis in diabetes. Blocking growth factor actions on proteoglycan synthesis 

with many known cardiovascular and diabetes drugs attenuates lipid binding and 

potential provides pleiotropic actions which assist in the prevention of atherosclerosis 

96,97. These signaling pathways have the potential to be therapeutic targets for vascular 

diseases such as atherosclerosis especially when targeted by highly specific agents 

34,35. Further studies will reveal the potential for these pathways to represent 

therapeutic targets that may be successfully exploited without interfering with the 

normal physiological functions of TGF-β. 
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Figures 

Figure 1. Atherosclerotic plaques show expression of TGF-β. Sections of abdominal 

aorta from a hypercholesterolemia non-human primate, Macaca nemestrina, and 

containing advanced fibrous plaques were immunostained with antibodies specific for 

control IgG (left panel) and with TGF-β1 (right panel). Positive staining for TGF-β1 

was seen in macrophages in the core of the lesion as well as macrophages scattered in 

the fibrous cap and near the luminal surface. Magnification, X60.  

Reprinted from Am J Pathol 1998, 152:533-546 with permission from the American 

Society for Investigative Pathology. 
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Figure 2. Schema showing our current knowledge of the signaling pathway through 

which Transforming  Growth Factor (TGF)-β stimulates changes in the synthesis and 

structure of proteoglycans secreted by vascular smooth muscle cells. These changes 

lead to increased in vitro binding of proteoglycan to LDL and given the established 

relationship between hyperglycemia and elevated TGF-β levels, these effects 

potentially underlie the increased atherosclerosis observed in people with diabetes. 

The pathway leading to the stimulation of biglycan synthesis involves the canonical as 

well as the MAP kinase linker region phosphorylation pathway (see text for details 

and references). Erk: Extracellular regulated kinase; p38: p38 Mitogen Activated 

Protein (MAP) kinases; TβRI and TβRII are the Type I and II TGF-β receptors, 

respectively. Smad is the Smad transcription factors as part of the TβRI signaling 

pathways. 
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