115 research outputs found

    Ignition delay times of benzene and toluene with oxygen in argon mixtures

    Get PDF
    The ignition delay times of benzene and toluene with oxygen diluted in argon were investigated over a wide range of conditions. For benzene the concentration ranges were 0.42 to 1.69 percent fuel and 3.78 to 20.3 percent oxygen. The temperature range was 1212 to 1748 K and the reflected shock pressures were 1.7 to 7.89 atm. Statistical evaluation of the benzene experiments provided an overall equation which is given. For toluene the concentration ranges were 0.5 to 1.5 percent fuel and 4.48 to 13.45 percent oxygen. The temperature range was 1339 to 1797 K and the reflected shock pressures were 1.95 to 8.85 atm. The overall ignition delay equation for toluene after a statistical evaluation is also given. Detailed experimental information is provided

    Ideal gas thermodynamic properties for the phenyl, phenoxy, and o-biphenyl radicals

    Get PDF
    Ideal gas thermodynamic properties of the phenyl and o-biphenyl radicals, their deuterated analogs and the phenoxy radical were calculated to 5000 K using estimated vibrational frequencies and structures. The ideal gas thermodynamic properties of benzene, biphenyl, their deuterated analogs and phenyl were also calculated

    Calculation of molecular thermochemical data and their availability in databases

    Get PDF
    Thermodynamic properties of molecules can be obtained by experiment, by statistical mechanics in conjunction with electronic structure theory and by empirical rules like group additivity. The latter two methods are briefly re-viewed in this chapter. The overview of electronic structure methods is intended for readers less experienced in electronic structure theory and focuses on concepts without going into mathematical details. This is followed by a brief description of group additivity schemes; finally, an overview of databases listing reliable thermochemical data is given

    Study of the High-Temperature Autoignition of n-Alkane/O/Ar Mixtures

    No full text
    corecore