230 research outputs found

    Increasing ventilation reduces SARS-CoV-2 airborne transmission in schools: A retrospective cohort study in Italy's Marche region

    Get PDF
    IntroductionWhile increasing the ventilation rate is an important measure to remove inhalable virus-laden respiratory particles and lower the risk of infection, direct validation in schools with population-based studies is far from definitive.MethodsWe investigated the strength of association between ventilation and SARS-CoV-2 transmission reported among the students of Italy's Marche region in more than 10,000 classrooms, of which 316 were equipped with mechanical ventilation. We used ordinary and logistic regression models to explore the relative risk associated with the exposure of students in classrooms.Results and discussionFor classrooms equipped with mechanical ventilation systems, the relative risk of infection of students decreased at least by 74% compared with a classroom with only natural ventilation, reaching values of at least 80% for ventilation rates >10 L s−1 student−1. From the regression analysis we obtained a relative risk reduction in the range 12%15% for each additional unit of ventilation rate per person. The results also allowed to validate a recently developed predictive theoretical approach able to estimate the SARS-CoV-2 risk of infection of susceptible individuals via the airborne transmission route. We need mechanical ventilation systems to protect students in classrooms from airborne transmission; the protection is greater if ventilation rates higher than the rate needed to ensure indoor air quality (>10 L s−1 student−1) are adopted. The excellent agreement between the results from the retrospective cohort study and the outcome of the predictive theoretical approach makes it possible to assess the risk of airborne transmission for any indoor environment

    Ventilation strategies to minimise the airborne virus transmission in indoor environments

    Get PDF
    A key challenge to fight the Covid-19 pandemic is to minimise the airborne transmission of the SARS-CoV-2 virus. Highly crowded indoor environments, such as schools, become possible hotspots for virus spreading because the basic non-pharmaceutical mitigation measures applied until now are not effective in reducing the virus airborne transmission mode, which is the principal one in indoor environments and requires improved ventilation. In the present study, a mass balance equation was applied to typical school scenarios to evaluate (i) required air exchange rates for mechanically-ventilated classrooms and (ii) adequate airing procedures for naturally ventilated classrooms. In the case of naturally ventilated classrooms, a feedback control strategy was evaluated using the measurements of indoor CO2. Our results show how these procedures can be applied in real life to support continued in-person instruction during a pandemic.publishedVersio

    La Giornata Mondiale del Rene "fai da te"

    Get PDF
    Da oltre cinque anni si svolge nel mese di marzo in Italia la Giornata Modiale del Rene, manifestazione importante per la prevenzione sul territorio delle malattie renali. Riportiamo la testimonianza di un giovane nefrologo, il dott. Luca Apicella, che per primo ha organizzato quest' evento nella sua città. Nel suo articolo ci descrive i principali passaggi organizzativi e le difficoltà che ha fronteggiato nei mesi precedenti l'evento fornendoci dunque un pratico vademecum per aiutare i giovani nefrologi a seguire il suo esempio e ad organizzare con successo lo stesso evento sul proprio territorio

    Charged particles and cluster ions produced during cooking activities

    Get PDF
    Previous studies showed that a significant number of the particles present in indoor air are generated by cooking activities, and measured particle concentrations and exposures have been used to estimate the related human dose. The dose evaluation can be affected by the particle charge level which is usually not considered in particle deposition models. To this purpose, in this paper we show, for the very first time, the electric charge of particles generated during cooking activities and thus extending the interest on particle charging characterization to indoor micro-environments, so far essentially focused on outdoors. Particle number, together with positive and negative cluster ion concentrations, was monitored using a condensation particle counter and two air ion counters, respectively, during different cooking events. Positively-charged particle distribution fractions during gas combustion, bacon grilling, and eggplant grilling events were measured by two Scanning Mobility Particle Sizer spectrometers, used with and without a neutralizer. Finally, a Tandem Differential Mobility Analyzer was used to measure the charge specific particle distributions of bacon and eggplant grilling experiments, selecting particles of 30, 50, 80 and 100 nm in mobility diameter. The total fraction of positively-charged particles was 4.0%, 7.9%, and 5.6% for gas combustion, bacon grilling, and eggplant grilling events, respectively, then lower than other typical outdoor combustion-generated particles

    numerical simulation of ultrafine particle dispersion in urban street canyons with the spalart allmaras turbulence model

    Get PDF
    The increased traffic emissions and reduced ventilation of urban street canyons lead to the formation of high particle concentrations as a function of the related flow field and geometry. In this context, the use of advanced modelling tools, able to evaluate particle concentration under different traffic and meteorological conditions, may be helpful. In this work, a numerical scheme based on the non-commercial fully explicit AC-CBS algorithm, and the one-equation Spalart-Allmaras turbulence model, was developed to perform numerical simulations of fluid flow and ultrafine particle dispersion in different street canyon configurations and under different wind speed and traffic conditions. The proposed non-commercial numerical tool was validated through a comparison with data drawn from the scientific literature. The results obtained from ultrafine particle concentration simulations show that as the building height increases the dispersion of particles in the canyon becomes weaker, due to the restricted interaction between the flow field in the street canyon and the undisturbed flow. Higher values of approaching wind speed facilitate the dispersion of the particles. The traffic effect has been evaluated by imposing different values of particles emission, depending on the vehicles type, with the lowest concentration values obtained for the Euro 6 vehicles, and the highest for High Duty Vehicles. A parametric analysis was also performed concerning the exposure to particles of pedestrians in different positions at the road level as a function of street canyon geometry, traffic mode, and wind speed. The worst exposure (1.25 × 10 6 part./cm 3 ) was found at the leeward side for an aspect ratio H/W = 1, wind speed of 5 m/s when High Duty Vehicles traffic was considered

    Relativistic non-instantaneous action-at-a-distance interactions

    Full text link
    Relativistic action-at-a-distance theories with interactions that propagate at the speed of light in vacuum are investigated. We consider the most general action depending on the velocities and relative positions of the particles. The Poincare invariant parameters that label successive events along the world lines can be identified with the proper times of the particles provided that certain conditions are impossed on the interaction terms in the action. Further conditions on the interaction terms arise from the requirement that mass be a scalar. A generic class of theories with interactions that satisfy these conditions is found. The relativistic equations of motion for these theories are presented. We obtain exact circular orbits solutions of the relativistic one-body problem. The exact relativistic one-body Hamiltonian is also derived. The theory has three components: a linearly rising potential, a Coulomb-like interaction and a dynamical component to the Poincar\'e invariant mass. At the quantum level we obtain the generalized Klein-Gordon-Fock equation and the Dirac equation

    X-TIME: An in-memory engine for accelerating machine learning on tabular data with CAMs

    Full text link
    Structured, or tabular, data is the most common format in data science. While deep learning models have proven formidable in learning from unstructured data such as images or speech, they are less accurate than simpler approaches when learning from tabular data. In contrast, modern tree-based Machine Learning (ML) models shine in extracting relevant information from structured data. An essential requirement in data science is to reduce model inference latency in cases where, for example, models are used in a closed loop with simulation to accelerate scientific discovery. However, the hardware acceleration community has mostly focused on deep neural networks and largely ignored other forms of machine learning. Previous work has described the use of an analog content addressable memory (CAM) component for efficiently mapping random forests. In this work, we focus on an overall analog-digital architecture implementing a novel increased precision analog CAM and a programmable network on chip allowing the inference of state-of-the-art tree-based ML models, such as XGBoost and CatBoost. Results evaluated in a single chip at 16nm technology show 119x lower latency at 9740x higher throughput compared with a state-of-the-art GPU, with a 19W peak power consumption

    On the newly discovered Canes Venatici II dSph galaxy

    Full text link
    We report on the detection of variable stars in the Canes Venatici II (CVn II) dwarf spheroidal galaxy, a new satellite of the Milky Way recently discovered by the Sloan Digital Sky Survey. We also present a V, B-V color-magnitude diagram that reaches V = 25.5 mag, showing the galaxy's main sequence turn off at V = 24.5 mag and revealing several candidate blue straggler stars. Two RR Lyrae stars have been identified within the half-light radius of CVn II,a fundamental-mode variable (RRab) with period P_ab = 0.743 days, and a first-overtone (RRc) RR Lyrae star with P_c = 0.358 days. The rather long periods of these variables along with their position on the period-amplitude diagram support an Oosterhoff type II classification for CVn II. The average apparent magnitude of the RR Lyrae stars, = 21.48 +/- 0.02 mag, is used to obtain a precision distance modulus of mu_0 = 21.02 +/- 0.06 mag and a corresponding distance of 160(+4,-5} kpc, for an adopted reddening E(B-V) = 0.015 mag.Comment: Submitted to ApJ Letter

    Effective Neutralizing Antibody Response Against SARS-CoV-2 Virus and Its Omicron BA.1 Variant in Fully Vaccinated Hematological Patients

    Get PDF
    SARS-CoV-2 and its variants cause CoronaVIrus Disease 19 (COVID-19), a pandemic disease. Hematological malignancies increase susceptibility to severe COVID-19 due to immunosuppression. Anti-SARS-CoV-2 neutralizing antibodies protect against severe COVID-19. This retrospective real-life study aimed to evaluate seropositivity and neutralizing antibody rates against SARS-CoV-2 and its Omicron BA.1 variant in hematological patients. A total of 106 patients with different hematologic malignancies, who have mostly received three or more vaccine doses (73%), were included in this study. Serum was collected between May and June 2022. The primary endpoint was anti-SARS-CoV-2 antibody response against ancestral (wild type; wt) and Omicron BA.1 virus, defined as a neutralizing antibody titer ≥ 1:10. Adequate neutralizing antibody response was observed in 75 (71%) and 87 (82%) of patients for wt and Omicron BA.1 variants, respectively.However, patients with B-cell lymphoproliferative disorders and/or those treated with anti-CD20 monoclonal antibodies in the prior 12 months showed a lower seropositivity rate compared to other patients against both Omicron BA.1 variant (73% vs 91%; P = 0.02) and wt virus (64% vs 78%; P = 0.16). Our real-life experience confirmed that full vaccination against SARS-CoV-2 induces adequate neutralizing antibody protection for both the wt virus and Omicron BA.1 variants, even in hematological frail patients. However, protective measures should be maintained in hematological patients, especially those with B-cell lymphoproliferative diseases treated with anti-CD20 monoclonal antibodies, because these subjects could have a reduced neutralizing antibody production
    • …
    corecore