562 research outputs found

    Benzo-fused Tri[8]annulenes as Molecular Models of Cubic Graphite

    Get PDF
    Cyclotrimerization of 9,10‐dibromo‐9,10‐dihydrodibenzo[3,4:7,8]cycloocta[1,2‐l]phenanthrene with potassium tert‐butoxide in the presence of a transition‐metal catalyst afforded two polycyclic aromatic hydrocarbon stereoisomers consisting of three cyclooctatetraene (COT) moieties connected via a central benzene ring. Both isomeric tri[8]annulenes were obtained selectively through the choice of the catalyst: The α,α,α‐form (Ru catalyst) displayed a threefold symmetrywith the COT subunits forming the side walls of a (chiral) molecular cup. In the thermodynamically more stable α,α,ÎČ‐isomer (Pd catalyst), one of the three boat‐shaped COTs was flipped over and faced the opposite molecular hemisphere with respect to the central benzene ring as evidenced by crystal structure analysis. Both title compounds are small segments of “cubic graphite”, an elusive carbon allotrope

    Deoxyribonucleic Acid as a Universal Electrolyte for Bio-Friendly Light-Emitting Electrochemical Cells [in press]

    Get PDF
    In the search for bio and eco‐friendly light sources, light‐emitting electrochemical cells (LECs) are promising candidates for the implementation of biomaterials in their device architecture thanks to their low fabrication complexity and wide range of potential technological applications. In this work, the use of the DNA derivative DNA‐cetyltrimethylammonium (DNA‐CTMA) is introduced as the ion‐solvating component of the solid polymer electrolyte (SPE) in the active layer of solution‐processed LECs. The focus is particularly on the investigation of its electrochemical and ionic conductivity properties demonstrating its suitability for device fabrication and correlation with thin film morphology. Furthermore, upon blending with the commercially available emissive polymer Super Yellow, the structure property relationship between the microstructure and the ionic conductivity is investigated and yields an optimized LEC performance. The large electrochemical stability window of DNA‐CTMA enables a stable device performance for a variety of emitters covering the complete visible spectral range, thus highlighting the universal character of this naturally sourced SPE

    Enhanced antiviral function of magnesium chloride-modified Heparin on a broad spectrum of viruses

    Get PDF
    Previous studies reported on the broad-spectrum antiviral function of heparin. Here we investigated the antiviral function of magnesium-modified heparin and found that modified heparin displayed a significantly enhanced antiviral function against human adenovirus (HAdV) in immortalized and primary cells. Nuclear magnetic resonance analyses revealed a conformational change of heparin when complexed with magnesium. To broadly explore this discovery, we tested the antiviral function of modified heparin against herpes simplex virus type 1 (HSV-1) and found that the replication of HSV-1 was even further decreased compared to aciclovir. Moreover, we investigated the antiviral effect against the new severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and measured a 55-fold decreased viral load in the supernatant of infected cells associated with a 38-fold decrease in virus growth. The advantage of our modified heparin is an increased antiviral effect compared to regular heparin

    Human surfactant protein D alters oxidative stress and HMGA1 expression to induce p53 apoptotic pathway in eosinophil leukemic cell line

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright: © 2013 Mahajan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant protein D (SP-D), an innate immune molecule, has an indispensable role in host defense and regulation of inflammation. Immune related functions regulated by SP-D include agglutination of pathogens, phagocytosis, oxidative burst, antigen presentation, T lymphocyte proliferation, cytokine secretion, induction of apoptosis and clearance of apoptotic cells. The present study unravels a novel ability of SP-D to reduce the viability of leukemic cells (eosinophilic leukemic cell line, AML14.3D10; acute myeloid leukemia cell line, THP-1; acute lymphoid leukemia cell lines, Jurkat, Raji; and human breast epithelial cell line, MCF-7), and explains the underlying mechanisms. SP-D and a recombinant fragment of human SP-D (rhSP-D) induced G2/M phase cell cycle arrest, and dose and timedependent apoptosis in the AML14.3D10 eosinophilic leukemia cell line. Levels of various apoptotic markers viz. activated p53, cleaved caspase-9 and PARP, along with G2/M checkpoints (p21 and Tyr15 phosphorylation of cdc2) showed significant increase in these cells. We further attempted to elucidate the underlying mechanisms of rhSP-D induced apoptosis using proteomic analysis. This approach identified large scale molecular changes initiated by SPD in a human cell for the first time. Among others, the proteomics analysis highlighted a decreased expression of survival related proteins such as HMGA1, overexpression of proteins to protect the cells from oxidative burst, while a drastic decrease in mitochondrial antioxidant defense system. rhSP-D mediated enhanced oxidative burst in AML14.3D10 cells was confirmed, while antioxidant, N-acetyl-L-cysteine, abrogated the rhSP-D induced apoptosis. The rhSP-D mediated reduced viability was specific to the cancer cell lines and viability of human PBMCs from healthy controls was not affected. The study suggests involvement of SP-D in host’s immunosurveillance and therapeutic potential of rhSP-D in the eosinophilic leukemia and cancers of other origins.Department of Biotechnology, Indi

    Increased sensitivity of p53-deficient cells to anticancer agents due to loss of Pms2

    Get PDF
    A large fraction of human tumours carries mutations in the p53 gene. p53 plays a central role in controlling cell cycle checkpoint regulation, DNA repair, transcription, and apoptosis upon genotoxic stress. Lack of p53 function impairs these cellular processes, and this may be the basis of resistance to chemotherapeutic regimens. By virtue of the involvement of DNA mismatch repair in modulating cytotoxic pathways in response to DNA damaging agents, we investigated the effects of loss of Pms2 on the sensitivity to a panel of widely used anticancer agents in E1A/Ha-Ras-transformed p53-null mouse fibroblasts either proficient or deficient in Pms2. We report that lack of the Pms2 gene is associated with an increased sensitivity, ranging from 2–6-fold, to some types of anticancer agents including the topoisomerase II poisons doxorubicin, etoposide and mitoxantrone, the platinum compounds cisplatin and oxaliplatin, the taxanes docetaxel and paclitaxel, and the antimetabolite gemcitabine. In contrast, no change in sensitivity was found after treatment with 5-fluorouracil. Cell cycle analysis revealed that both, Pms2-deficient and -proficient cells, retain the ability to arrest at the G2/M upon cisplatin treatment. The data indicate that the concomitant loss of Pms2 function chemosensitises p53-deficient cells to some types of anticancer agents, that Pms2 positively modulates cell survival by mechanisms independent of p53, and that increased cytotoxicity is paralleled by increased apoptosis. Tumour-targeted functional inhibition of Pms2 may be a valuable strategy for increasing the efficacy of anticancer agents in the treatment of p53-mutant cancers

    Benzofuran-fused Phosphole: Synthesis, Electronic, and Electroluminescence Properties

    Get PDF
    International audienceA synthetic route to novel benzofuran-fused phosphole derivatives 3-5 is described. These compounds showed optical and electrochemical properties that differ from their benzothiophene analog. Preliminary results show that 4 can be used as an emitter in OLEDs, illustrating the potential of these new compounds for opto-electronic applications
    • 

    corecore