8 research outputs found

    Sarcopenic Dysphagia and Simplified Rehabilitation Nutrition Care Process: An Update

    Get PDF
    Sarcopenic dysphagia is characterized by weakness of swallowing-related muscles associated with whole-body sarcopenia. As the number of patients with sarcopenia increases with the aging of the world, the number of patients with sarcopenic dysphagia is also increasing. The prevalence of sarcopenic dysphagia is high in the institutionalized older people and in patients hospitalized for pneumonia with dysphagia in acute care hospitals. Prevention, early detection and intervention of sarcopenic dysphagia with rehabilitation nutrition are essential. The diagnosis of sarcopenic dysphagia is based on skeletal and swallowing muscle strength and muscle mass. A reliable and validated diagnostic algorithm for sarcopenic dysphagia is used. Sarcopenic dysphagia is associated with malnutrition, which leads to mortality and Activities of Daily Living (ADL) decline. The rehabilitation nutrition approach improves swallowing function, nutrition status, and ADL. A combination of aggressive nutrition therapy to improve nutrition status, dysphagia rehabilitation, physical therapy, and other interventions can be effective for sarcopenic dysphagia. The rehabilitation nutrition care process is used to assess and problem solve the patient’s pathology, sarcopenia, and nutrition status. The simplified rehabilitation nutrition care process consists of a nutrition cycle and a rehabilitation cycle, each with five steps: assessment, diagnosis, goal setting, intervention, and monitoring. Nutrition professionals and teams implement the nutrition cycle. Rehabilitation professionals and teams implement the rehabilitation cycle. Both cycles should be done simultaneously. The nutrition diagnosis of undernutrition, overnutrition/obesity, sarcopenia, and goal setting of rehabilitation and body weight are implemented collaboratively

    Enhancement of production of eugenol and its glycosides in transgenic aspen plants via genetic engineering.

    Get PDF
    Eugenol, a volatile phenylpropene found in many plant species, exhibits antibacterial and acaricidal activities. This study attempted to modify the production of eugenol and its glycosides by introducing petunia coniferyl alcohol acetyltransferase (PhCFAT) and eugenol synthase (PhEGS) into hybrid aspen. Gas chromatography analyses revealed that wild-type hybrid aspen produced small amount of eugenol in leaves. The heterologous overexpression of PhCFAT alone resulted in up to 7-fold higher eugenol levels and up to 22-fold eugenol glycoside levels in leaves of transgenic aspen plants. The overexpression of PhEGS alone resulted in a subtle increase in either eugenol or eugenol glycosides, and the overexpression of both PhCFAT and PhEGS resulted in significant increases in the levels of both eugenol and eugenol glycosides which were nonetheless lower than the increases seen with overexpression of PhCFAT alone. On the other hand, overexpression of PhCFAT in transgenic Arabidopsis and tobacco did not cause any synthesis of eugenol. These results indicate that aspen leaves, but not Arabidopsis and tobacco leaves, have a partially active pathway to eugenol that is limited by the level of CFAT activity and thus the flux of this pathway can be increased by the introduction of a single heterologous gene

    Glutathione-analogous peptidyl phosphorus esters as mechanism-based inhibitors of γ-glutamyl transpeptidase for probing cysteinyl-glycine binding site.

    Get PDF
    γ-Glutamyl transpeptidase (GGT) catalyzing the cleavage of γ-glutamyl bond of glutathione and its S-conjugates is involved in a number of physiological and pathological processes through glutathione homeostasis. Defining its Cys-Gly binding site is extremely important not only in defining the physiological function of GGT, but also in designing specific and effective inhibitors for pharmaceutical purposes. Here we report the synthesis and evaluation of a series of glutathione-analogous peptidyl phosphorus esters as mechanism-based inhibitors of human and Escherichia coli GGTs to probe the structural and stereochemical preferences in the Cys-Gly binding site. Both enzymes were inhibited strongly and irreversibly by the peptidyl phosphorus esters with a good leaving group (phenoxide). Human GGT was highly selective for l-aliphatic amino acid such as l-2-aminobutyrate (l-Cys mimic) at the Cys binding site, whereas E. coli GGT significantly preferred l-Phe mimic at this site. The C-terminal Gly and a l-amino acid analogue at the Cys binding site were necessary for inhibition, suggesting that human GGT was highly selective for glutathione (γ-Glu-l-Cys-Gly), whereas E. coli GGT are not selective for glutathione, but still retained the dipeptide (l-AA-Gly) binding site. The diastereoisomers with respect to the chiral phosphorus were separated. Both GGTs were inactivated by only one of the stereoisomers with the same stereochemistry at phosphorus. The strict recognition of phosphorus stereochemistry gave insights into the stereochemical course of the catalyzed reaction. Ion-spray mass analysis of the inhibited E. coli GGT confirmed the formation of a 1:1 covalent adduct with the catalytic subunit (small subunit) with concomitant loss of phenoxide, leaving the peptidyl moiety that presumably occupies the Cys-Gly binding site. The peptidyl phosphonate inhibitors are highly useful as a ligand for X-ray structural analysis of GGT for defining hitherto unidentified Cys-Gly binding site to design specific inhibitors

    Cytochrome P450 CYP710A Encodes the Sterol C-22 Desaturase in Arabidopsis and Tomato

    No full text
    Δ22-Unsaturated sterols, containing a double bond at the C-22 position in the side chain, occur specifically in fungi and plants. Here, we describe the identification and characterization of cytochrome P450s belonging to the CYP710A family as the plant C-22 desaturase. Recombinant proteins of CYP710A1 and CYP710A2 from Arabidopsis thaliana and CYP710A11 from tomato (Lycopersicon esculentum) were expressed using a baculovirus/insect system. The Arabidopsis CYP710A1 and tomato CYP710A11 proteins exhibited C-22 desaturase activity with β-sitosterol to produce stigmasterol (CYP710A1, K(m) = 1.0 μM and kinetic constant [k(cat)] = 0.53 min(−1); CYP710A11, K(m) = 3.7 μM and k(cat) = 10 min(−1)). In Arabidopsis transgenic lines with CYP710A1 and CYP710A11 overexpression, stigmasterol levels increased by 6- to 32-fold. Arabidopsis CYP710A2 was able to produce brassicasterol and stigmasterol from 24-epi-campesterol and β-sitosterol, respectively. Sterol profiling analyses for CYP710A2 overexpression and a T-DNA insertion event into CYP710A2 clearly demonstrated in planta that CYP710A2 was responsible for both brassicasterol and stigmasterol production. Semiquantitative PCR analyses and promoter:β-glucuronidase transgenic approaches indicated strict tissue/organ-specific regulation for each CYP710A gene, implicating differential tissue distributions of the Δ(22)-unsaturated sterols in Arabidopsis. Our results support the possibility that the CYP710 family may encode P450s of sterol C-22 desaturases in different organisms
    corecore