82 research outputs found

    In Vitro Testing of Femoral Impaction Grafting With Porous Titanium Particles: A Pilot Study

    Get PDF
    The disadvantages of allografts to restore femoral bone defects during revision hip surgery have led to the search for alternative materials. We investigated the feasibility of using porous titanium particles and posed the following questions: (1) Is it possible to create a high-quality femoral graft of porous titanium particles in terms of graft thickness, cement thickness, and cement penetration? (2) Does this titanium particle graft layer provide initial stability when a femoral cemented stem is implanted in it? (3) What sizes of particles are released from the porous titanium particles during impaction and subsequent cyclic loading of the reconstruction? We simulated cemented revision reconstructions with titanium particles in seven composite femurs loaded for 300,000 cycles and measured stem subsidence. Particle release from the titanium particle grafts was analyzed during impaction and loading. Impacted titanium particles formed a highly interlocked graft layer. We observed limited cement penetration into the titanium particle graft. A total mean subsidence of 1.04 mm was observed after 300,000 cycles. Most particles released during impaction were in the phagocytable range (< 10 Όm). There was no detectable particle release during loading. Based on the data, we believe titanium particles are a promising alternative for allografts. However, animal testing is warranted to investigate the biologic effect of small-particle release

    Development of a fast curing tissue adhesive for meniscus tear repair

    Get PDF
    Isocyanate-terminated adhesive amphiphilic block copolymers are attractive materials to treat meniscus tears due to their tuneable mechanical properties and good adhesive characteristics. However, a drawback of this class of materials is their relatively long curing time. In this study, we evaluate the use of an amine cross-linker and addition of catalysts as two strategies to accelerate the curing rates of a recently developed biodegradable reactive isocyanate-terminated hyper-branched adhesive block copolymer prepared from polyethylene glycol (PEG), trimethylene carbonate, citric acid and hexamethylene diisocyanate. The curing kinetics of the hyper-branched adhesive alone and in combination with different concentrations of spermidine solutions, and after addition of 2,2-dimorpholinodiethylether (DMDEE) or 1,4-diazabicyclo [2.2.2] octane (DABCO) were determined using FTIR. Additionally, lap-shear adhesion tests using all compositions at various time points were performed. The two most promising compositions of the fast curing adhesives were evaluated in a meniscus bucket handle lesion model and their performance was compared with that of fibrin glue. The results showed that addition of both spermidine and catalysts to the adhesive copolymer can accelerate the curing rate and that firm adhesion can already be achieved after 2 h. The adhesive strength to meniscus tissue of 3.2–3.7 N was considerably higher for the newly developed compositions than for fibrin glue (0.3 N). The proposed combination of an adhesive component and a cross-linking component or catalyst is a promising way to accelerate curing rates of isocyanate-terminated tissue adhesives

    Impregnation of bone chips with alendronate and cefazolin, combined with demineralized bone matrix: a bone chamber study in goats

    Get PDF
    Contains fulltext : 108265.pdf (publisher's version ) (Open Access)BACKGROUND: Bone grafts from bone banks might be mixed with bisphosphonates to inhibit the osteoclastic response. This inhibition prevents the osteoclasts to resorb the allograft bone before new bone has been formed by the osteoblasts, which might prevent instability. Since bisphosphonates may not only inhibit osteoclasts, but also osteoblasts and thus bone formation, we studied different bisphosphonate concentrations combined with allograft bone. We investigated whether locally applied alendronate has an optimum dose with respect to bone resorption and formation. Further, we questioned whether the addition of demineralized bone matrix (DBM), would stimulate bone formation. Finally, we studied the effect of high levels of antibiotics on bone allograft healing, since mixing allograft bone with antibiotics might reduce the infection risk. METHODS: 25 goats received eight bone conduction chambers in the cortical bone of the proximal medial tibia. Five concentrations of alendronate (0, 0.5 mg/mL, 1 mg/mL, 2 mg/mL, and 10 mg/mL) were tested in combination with allograft bone and supplemented with cefazolin (200 mug/mL). Allograft not supplemented with alendronate and cefazolin served as control. In addition, allograft mixed with demineralized bone matrix, with and without alendronate, was tested. After 12 weeks, graft bone area and new bone area were determined with manual point counting. RESULTS: Graft resorption decreased significantly (p < 0.001) with increasing alendronate concentration. The area of new bone in the 1 mg/mL alendronate group was significantly (p = 0.002) higher when compared to the 10 mg/mL group. No differences could be observed between the group without alendronate, but with demineralized bone, and the control groups. CONCLUSIONS: A dose-response relationship for local application of alendronate has been shown in this study. Most new bone was present at 1 mg/mL alendronate. Local application of cefazolin had no effect on bone remodelling

    Mechanical Behavior of a Porous, Sub-total Meniscus Implant Based on Poly(trimethylene carbonate)

    Get PDF
    Meniscus tears often occur in the avascular inner part of the meniscus and therefore do not heal spontaneously. Current treatments such as meniscectomy and the implantation of allografts are insufficient. In this study we prepared a designed, sub-total, porous meniscus implant from functionalized poly(trimethylene carbonate) by stereolithography, and investigated its mechanical behavior in a human cadaveric knee. The sub-total meniscus implant was sutured to the peripheral rim of the meniscus and placed in the medial compartment of the knee. To determine the peak- and mean pressures and the contact area pressure distribution, measurements were made and compared to those of the native meniscus-, meniscectomy- and allograft implant situations. Compared to the native meniscus, meniscectomy results in considerably higher peak- and mean pressures. Compared to meniscectomy, the allograft and PTMC implants show a limited decrease in peak pressures and a much lower mean pressure. The mean pressures are close to those of the native meniscus. Both the allograft and the PTMC implant show improved mechanical behavior compared to meniscectomy. It can be expected that the mechanical function of the PTMC implant will improve upon the formation of tissue in the pores of the implant after implantation in patients

    Biocompatibility and degradation comparisons of four biodegradable copolymeric osteosynthesis systems used in maxillofacial surgery:A goat model with four years follow-up

    Get PDF
    Applying biodegradable osteosyntheses avoids the disadvantages of titanium osteosyntheses. However, foreign-body reactions remain a major concern and evidence of complete resorption is lacking. This study compared the physico-chemical properties, histological response and radiographs of four copolymeric biodegradable osteosynthesis systems in a goat model with 48-months follow-up. The systems were implanted subperiosteally in both tibia and radius of 12 Dutch White goats. The BioSorb FX [poly(70LLA-co-30DLLA)], Inion CPS [poly([70-78.5]LLA-co-[16-24]DLLA-co-4TMC)], SonicWeld Rx [poly(DLLA)], LactoSorb [poly(82LLA-co-18GA)] systems and a negative control were randomly implanted in each extremity. Samples were assessed at 6-, 12-, 18-, 24-, 36-, and 48-month follow-up. Surface topography was performed using scanning electron microscopy (SEM). Differential scanning calorimetry and gel permeation chromatography were performed on initial and explanted samples. Histological sections were systematically assessed by two blinded researchers using (polarized) light microscopy, SEM and energy-dispersive X-ray analysis. The SonicWeld Rx system was amorphous while the others were semi-crystalline. Foreign-body reactions were not observed during the complete follow-up. The SonicWeld Rx and LactoSorb systems reached bone percentages of negative controls after 18 months while the BioSorb Fx and Inion CPS systems reached these levels after 36 months. The SonicWeld Rx system showed the most predictable degradation profile. All the biodegradable systems were safe to use and well-tolerated (i.e., complete implant replacement by bone, no clinical or histological foreign body reactions, no [sterile] abscess formation, no re-interventions needed), but nanoscale residual polymeric fragments were observed at every system's assessment

    Is an Impacted Morselized Graft in a Cage an Alternative for Reconstructing Segmental Diaphyseal Defects?

    Get PDF
    Large diaphyseal bone defects often are reconstructed with large structural allografts but these are prone to major complications. We therefore asked whether impacted morselized bone graft could be an alternative for a massive structural graft in reconstructing large diaphyseal bone defects. Defects in the femora of goats were reconstructed using a cage filled with firmly impacted morselized allograft or with a structural cortical autograft (n = 6 in both groups). All reconstructions were stabilized with an intramedullary nail. The goats were allowed full weightbearing. In all reconstructions, the grafts united radiographically. Mechanical torsion strength of the femur with the cage and structural cortical graft reconstructions were 66.6% and 60.3%, respectively, as compared with the contralateral femurs after 6 months. Histologically, the impacted morselized graft was replaced completely by new viable bone. In the structural graft group, a mixture of new and necrotic bone was present. Incorporation of the impacted graft into new viable bone suggests this type of reconstruction may be safer than reconstruction with a structural graft in which creeping substitution results in a mixture of viable and necrotic bone that can fracture. The data suggest that a cage filled with a loaded morselized graft could be an alternative for the massive cortical graft in reconstruction of large diaphyseal defects in an animal model

    A visible-light-driven molecular motor based on barbituric acid

    Get PDF
    We present a class of visible-light-driven molecular motors based on barbituric acid. Due to a serendipitous reactivity we observed during their synthesis, these motors possess a tertiary stereogenic centre on the upper half, characterised by a hydroxy group. Using a combination of femto- and nanosecond transient absorption spectroscopy, molecular dynamics simulations and low-temperature 1H NMR experiments we found that these motors operate similarly to push-pull second-generation overcrowded alkene-based molecular motors. Interestingly, the hydroxy group at the stereocentre enables a hydrogen bond with the carbonyl groups of the barbituric acid lower half, which drives a sub-picosecond excited-state isomerisation, as observed spectroscopically. Computational simulations predict an excited state “lasso” mechanism where the intramolecular hydrogen bond pulls the molecule towards the formation of the metastable state, with a high predicted quantum yield of isomerisation (68%) in gas phase.</p

    Evaluation of subsidence, chondrocyte survival and graft incorporation following autologous osteochondral transplantation

    Get PDF
    Contains fulltext : 95878.pdf (publisher's version ) (Open Access)PURPOSE: The aim of this study was to evaluate subsidence tendency, surface congruency, chondrocyte survival and plug incorporation after osteochondral transplantation in an animal model. The potential benefit of precise seating of the transplanted osteochondral plug on the recipient subchondral host bone ('bottoming') on these parameters was assessed in particular. METHODS: In 18 goats, two osteochondral autografts were harvested from the trochlea of the ipsilateral knee joint and inserted press-fit in a standardized articular cartilage defect in the medial femoral condyle. In half of the goats, the transplanted plugs were matched exactly to the depth of the recipient hole (bottomed plugs; n = 9), whereas in the other half of the goats, a gap of 2 mm was left between the plugs and the recipient bottom (unbottomed plugs; n = 9). After 6 weeks, all transplants were evaluated on gross morphology, subsidence, histology, and chondrocyte vitality. RESULTS: The macroscopic morphology scored significantly higher for surface congruency in bottomed plugs as compared to unbottomed reconstructions (P = 0.04). However, no differences in histological subsidence scoring between bottomed and unbottomed plugs were found. The transplanted articular cartilage of both bottomed and unbottomed plugs was vital. Only at the edges some matrix destaining, chondrocyte death and cluster formation was observed. At the subchondral bone level, active remodeling occurred, whereas integration at the cartilaginous surface of the osteochondral plugs failed to occur. Subchondral cysts were found in both groups. CONCLUSIONS: In this animal model, subsidence tendency was significantly lower after 'bottomed' versus 'unbottomed' osteochondral transplants on gross appearance, whereas for histological scoring no significant differences were encountered. Since the clinical outcome may be negatively influenced by subsidence, the use of 'bottomed' grafts is recommended for osteochondral transplantation in patients

    Impregnation of bone chips with antibiotics and storage of antibiotics at different temperatures: an in vitro study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allograft bone used in joint replacement surgery can additionally serve as a carrier for antibiotics and serve as a prophylaxis against infections. However, <it>in vitro </it>dose-response curves for bone chips impregnated with different kinds of antibiotics are not available. In addition, while it would be desirable to add the antibiotics to allograft bone chips before these are stored in a bone bank, the effects of different storage temperatures on antibiotics are unknown.</p> <p>Methods</p> <p>Five different antibiotics (cefazolin, clindamycin, linezolid, oxacillin, vancomycin) were stored, both as pills and as solutions, at -80°C, -20°C, 4°C, 20°C and 37°C; in addition, bone chips impregnated with cefazolin and vancomycin were stored at -80°C and -20°C. After 1 month, 6 months and 1 year, the activity of the antibiotics against <it>Staphylococcus epidermidis </it>was measured using an inoculated agar. The diameter of the <it>S. epidermidis</it>-free zone was taken as a measure of antibiotic activity.</p> <p>In a separate experiment, <it>in vitro </it>dose-response curves were established for bone chips impregnated with cefazolin and vancomycin solutions at five different concentrations.</p> <p>Finally, the maximum absorbed amounts of cefazolin and vancomycin were established by impregnating 1 g of bone chips with 5 ml of antibiotic solution.</p> <p>Results</p> <p>A decrease of the <it>S. epidermidis</it>-free zone was seen with oxacillin and cefazolin solutions stored at 37°C for 1 month, with vancomycin stored at 37°C for 6 months and with cefazolin and oxacillin solutions stored at 20°C for 6 months. The activity of the other antibiotic solutions, pills and impregnated bone chips was not affected by storage. The <it>in vitro </it>dose-response curves show that the free-zone diameter increases logarithmically with antibiotic concentration. The absorbed antibiotic amount of one gram bone chips was determined.</p> <p>Conclusions</p> <p>Storage of antibiotics in frozen form or storage of antibiotic pills at temperatures up to 37°C for 12 months does not affect their activity. However, storage of antibiotic solutions at temperatures above 20°C does affect the activity of some of the antibiotics investigated. The <it>in vitro </it>dose-response curve can be used to determine the optimal concentration(s) for local application. It provides the opportunity to determine the antibiotic content of bone chips, and thus the amount of antibiotics available locally after application.</p

    A modified cementing technique using BoneSource to augment fixation of the acetabulum in a sheep model

    Get PDF
    Background and purpose Our aim was to prove in an animal model that the use of HA paste at the cement-bone interface in the acetabulum would improve fixation. We examined, in sheep, the effect of interposing a layer of hydroxyapatite cement around the periphery of a polyethylene socket prior to fixing it using polymethylemethacrylate (PMMA). Methods We made a randomized study involving 22 sheep to test whether the application of BoneSource hydroxyapatite material to the surface of the ovine acetabulum prior to cementing a polyethylene cup at hip arthroplasty improved the fixation and the nature of the interface. We studied the gross radiographical appearance of the implant-bone interface and the histological appearance at the interface. Results There were more radiolucencies evident in the control group. Histologically, only sheep randomized into the BoneSource group exhibited a fully osseointegrated interface. Use of the hydroxyapatite material did not confer any detrimental effects. In some cases the material appeared to have been fully resorbed. When the material was evident on histological section, it was incorporated into an osseointegrated interface. There was no giant cell reaction present in any case. There was no evidence of migration of BoneSource to the articulation. Interpretation The application of HA material prior to cementation of a socket produced an improved interface. The technique may be useful in man with to extend the longevity of the cemented implant by protecting the socket interface from the effect of hydrodynamic fluid flow and particulate debris
    • 

    corecore