99 research outputs found

    Lower Cretaceous (Hauterivian-Albian) ammonite biostratigraphy in the Maestrat Basin (E Spain)

    Get PDF
    A review of the stratigraphic distribution of ammonoid species in the Lower Cretaceous (Hauterivian-Albian) of the Maestrat Basin (E Spain) was carried out. The specimens were mainly collected in the field by us and are stored in university or museum collections. Specimens from private collections and figured in the literature were also studied. We recognized 73 species that are distributed, in accordance with the latest version of the standard Mediterranean ammonite zonation for the Lower Cretaceous, in 14 ammonite zones: Acanthodiscus radiatus, Crioceratites loryi, Lyticoceras nodosoplicatum (Lower Hauterivian); Pseudothurmannia ohmi (Upper Hauterivian); Imerites giraudi (Upper Barremian); Deshayesites oglanlensis, Deshayesites forbesi, Deshayesites deshayesi, Dufrenoyia furcata (Lower Aptian); Epicheloniceras martini, Parahoplites melchioris, Acanthohoplites nolani (Upper Aptian); Leymeriella tardefurcata and Douvilleiceras mammillatum (Lower Albian). The recognition of these biozones allows a precise age calibration of the Maestrat Basin's lithostatigraphic units that contain ammonoids as well as an associated indirect age calibration of the formations without ammonoids. Consequently, this report provides an updated, comprehensive and precise biostratigraphic framework, which aims to become a reference for the analysis of the Lower Cretaceous strata of the Maestrat Basin. The results are also relevant for the analysis of coeval ammonite-bearing sedimentary successions found in other Tethyan basins

    Lower Cretaceous (Hauterivian-Albian) ammonite biostratigraphy in the Maestrat Basin (E Spain)

    Get PDF
    A review of the stratigraphic distribution of ammonoid species in the Lower Cretaceous (Hauterivian-Albian) of the Maestrat Basin (E Spain) was carried out. The specimens were mainly collected in the field by us and are stored in university or museum collections. Speci­mens from private collections and figured in the literature were also studied. We recognized 73 species that are distributed, in accordance with the latest version of the standard Mediterranean ammonite zonation for the Lower Cretaceous, in 14 ammonite zones: Acanthodiscus radiatus, Crioceratites loryi, Lyticoceras nodosoplicatum (Lower Hauterivian); Pseudothurmannia ohmi (Upper Hauterivian); Imerites giraudi (Upper Barremian); Deshayesites oglanlensis, Deshayesites forbesi, Deshayesites deshayesi, Dufrenoyia furcata (Lower Aptian); Epicheloniceras martini, Parahoplites melchioris, Acanthohoplites nolani (Upper Aptian); Leymeriella tardefurcata and Douvilleiceras mammillatum (Lower Albian). The recognition of these biozones allows a precise age calibration of the Maestrat Basin’s lithostatigraphic units that contain ammonoids as well as an associated indirect age calibration of the formations without ammonoids. Consequently, this report provides an updated, comprehensive and precise biostratigraphic framework, which aims to become a reference for the analysis of the Lower Cretaceous strata of the Maestrat Basin. The results are also relevant for the analysis of coeval ammonite-bearing sedimentary successions found in other Tethyan basins.En este trabajo se ha realizado una revisión detallada de la distribución estratigráfica de las especies de ammonoideos del Cretácico infe­rior de la Cuenca del Maestrazgo (Este de España). Los ejemplares recolectados, principalmente por los autores, han sido depositados en co­lecciones universitarias y museísticas. Además hemos estudiado los ejemplares de colecciones privadas y figurados en la literatura. Hemos reconocido 73 especies que se distribuyen, siguiendo la última versión de la biozonación de ammonites mediterránea estándar del Cretácico inferior, en 14 zonas de ammonoideos: Acanthodiscus radiatus, Crioceratites loryi, Lyticoceras nodosoplicatum (Hauteriviense inferior); Pseudothurmannia ohmi (Hauteriviense superior); Imerites giraudi (Barremiense superior); Deshayesites oglanlensis, Deshayesites forbesi, Deshayesites deshayesi, Dufrenoyia furcata (Aptiense inferior); Epicheloniceras martini, Parahoplites melchioris, Acanthohoplites nolani (Aptiense superior); Leymeriella tardefurcata y Douvilleiceras mammillatum (Albiense inferior). El reconocimiento de estas biozonas permite precisar la edad de las unidades litoestratigráficas que contienen ammonites y también una calibración indirecta de las formaciones que no contienen ammonites. En consecuencia este trabajo proporciona un marco bioestratigráfico actualizado, exhaustivo y preciso que pretende ser una referencia para el análisis estratigráfico del Cretácico inferior de la Cuenca del Maestrazgo. Los resultados obtenidos son también relevantes para el análisis de las sucesiones sedimentarias coetáneas con ammonites existentes en otras cuencas de Tetis

    The proposal of a GSSP for the Berriasian Stage (Cretaceous System): Part 1.

    Get PDF
    Here in the first part of this publication we discuss the possibilities for the selection of a GSSP for the Berriasian Stage of the Cretaceous System, based on the established methods for correlation in the Tithonian/Berriasian interval. This will be followed, in the second part, by an account of the stratigraphic evidence that justifies the locality of Tré Maroua (Hautes-Alpes, SE France) as the proposed GSSP. Here we discuss the possibilities for correlation in the historical J/K boundary interval, and the evolution of thinking on the positioning of the boundary over recent generations, and in relation to research in the last ten years. The Tithonian/Berriasian boundary level is accepted as occurring within magnetosubzone M19n.2n. The detailed distribution of calpionellids has been recorded at numerous sites, tied to magnetostratigraphy, and the base of the calpionellid Alpina Zone is taken to define the base of the Berriasian Stage. This is at a level just below the distinctive reversed magnetic subzone M19n.1r (the so-called Brodno reversal). We discuss a wide range of magnetostratigraphic and biostratigraphic data from key localities globally, in the type Berriasian areas of France and wider regions (Le Chouet, Saint Bertrand, Puerto Escaño, Rio Argos, Bosso, Brodno, Kurovice, Theodosia etc.). The characteristic datums that typify the J/K boundary interval in Tethys and its extensions are detailed, and the correlative viability of various fossil groups is discussed. The boundary level is correlated to well-known J/K sections globally, and a series of secondary markers and proxies are indicated which assist wider correlation. Particularly significant are the primary basal Berriasian marker, the base of the Alpina Subzone (marked by dominance of small Calpionella alpina, Crassicollaria parvula and Tintinopsella carpathica) and secondary markers bracketing the base of the Calpionella Zone, notably the FOs of the calcareous nannofossil species Nannoconus wintereri (just below the boundary) and the FO of Nannoconus steinmannii minor (just above). Notable proxies for the boundary are: 1) the base of the Arctoteuthis tehamaensis Zone in boreal and subboreal regions, 2) the dated base of the Alpina Subzone at 140.22 ± 0.14 Ma, which also gives a precise age estimate for the system boundary; and 3) the base of radiolarian “unitary zone” 14, which is situated just above the base of the Alpina Subzone

    The proposal of a GSSP for the Berriasian Stage (Cretaceous System): Part 2

    Get PDF
    In part 1 of this work we discussed the possibilities for the selection of a GSSP for the Berriasian Stage of the Cretaceous System, based on prevailing practical methods for correlation in that J/K interval, traditional usage and the consensus over the best boundary markers that had developed in the last forty years. This consensus has developed further, based on the results of multidisciplinary studies on numerous sites over the last decade. Here in Part 2 we give an account of the application of those results by the Berriasian Working Group (ISCS), and present the stratigraphic evidence that justifies the selection of the locality of Tré Maroua (Hautes-Alpes, SE France) as the proposed GSSP. We describe a 45 m-thick section in the Calcaires Blancs vocontiens – that part of the formation covering the calpionellid Chitinoidella, Remanei. Intermedia, Colomi, Alpina, Ferasini, Elliptica and Simplex biozones. The stratigraphic data collected here has been compiled as part of a wider comparative study of complementary Vocontian Basin sites (with localities at Charens, St Bertrand, Belvedere and Le Chouet). Evidence from Tré Maroua thus sits in this substantial regional biostratigraphic and magnetostratigraphic context. For the purposes of the GSSP definition, here we particularly concentrate on the unbroken sequence and biotic markers in the interval immediately below the boundary, the Colomi Subzone (covering circa 675,000 years), and immediately above, the Alpina Subzone (covering circa 725,000 years). Particularly significant fossil datums identified in the Tré Maroua profile are the primary basal Berriasian marker, the base of the Alpina Subzone (a widespread event marked by dominance of small Calpionella alpina, with rare Crassicollaria parvula and Tintinopsella carpathica): the base of the Berriasian Stage is placed at the base of bed 14, which coincides with the base of the Alpina Subzone. Secondary markers bracketing the base of the Calpionella Zone are the FOs of the calcareous nannofossil species Nannoconus wintereri, close below the boundary, and the FO of Nannoconus steinmannii minor, close above. The Tithonian/Berriasian boundary level occurs within M19n.2n, in common with many documented sites, and is just below the distinctive reversed magnetic subzone M19n.1r (the so-called Brodno reversal). We present data which is congruent with magnetostratigraphic and biostratigraphic data from other key localities in France and in wider regions (Le Chouet, Saint Bertrand, Puerto Escaño, Rio Argos, Bosso, Brodno, Kurovice, Theodosia…), and thus the characteristics and datums identified at Tré Maroua are key for correlation and, in general, they typify the J/K boundary interval in Tethys and connected seas

    Reconnaissance automatique des occlusives de l'arabe standard

    No full text
    standard arabic is distinctive from other Indo-European languages by the articulation of sounds in the back part of the vocal track, by the feature of gemination and by the complexity of certain consonants from a velarisation. The stop consonants of Arabic do not escape these particularities and form the object of our study within the frame of speech recognition. With the help of a mixed system using Prolog rules and neural networks conjointly, we locate and identify the occlusives of Arabic as well as the nasal consonants in an ascendant phase of Acoustic-Phonetic Decoding.l'arabe standard se distingue des langues indo-européennes par l'articulation de sons dans la partie arrière du conduit vocal, par le trait de gémination et par la complication de certaines consonnes d'une vélarisation. Les consonnes interrompues de l'arabe n'échappent pas à ces particularités et font l'objet de notre étude dans le cadre de la reconnaissance de la parole. A l'aide d'un système mixte utilisant conjointement des règles Prolog est des réseaux de neurones, nous localisons et identifions les occlusives de l'arabe ainsi que les consonnes nasales dans une phase ascendante du Décodage Acoustico-Phonétique
    corecore