1,543 research outputs found

    Alien Registration- Bulmer, George W. (Lagrange, Penobscot County)

    Get PDF
    https://digitalmaine.com/alien_docs/7746/thumbnail.jp

    Fluctuations of the Lyapunov exponent in 2D disordered systems

    Full text link
    We report a numerical investigation of the fluctuations of the Lyapunov exponent of a two dimensional non-interacting disordered system. While the ratio of the mean to the variance of the Lyapunov exponent is not constant, as it is in one dimension, its variation is consistent with the single parameter scaling hypothesis

    Detector-Agnostic Phase-Space Distributions

    Full text link
    The representation of quantum states via phase-space functions constitutes an intuitive technique to characterize light. However, the reconstruction of such distributions is challenging as it demands specific types of detectors and detailed models thereof to account for their particular properties and imperfections. To overcome these obstacles, we derive and implement a measurement scheme that enables a reconstruction of phase-space distributions for arbitrary states whose functionality does not depend on the knowledge of the detectors, thus defining the notion of detector-agnostic phase-space distributions. Our theory presents a generalization of well-known phase-space quasiprobability distributions, such as the Wigner function. We implement our measurement protocol, using state-of-the-art transition-edge sensors without performing a detector characterization. Based on our approach, we reveal the characteristic features of heralded single- and two-photon states in phase space and certify their nonclassicality with high statistical significance

    Clustered bottlenecks in mRNA translation and protein synthesis

    Full text link
    We construct an algorithm that generates large, band-diagonal transition matrices for a totally asymmetric exclusion process (TASEP) with local hopping rate inhomogeneities. The matrices are diagonalized numerically to find steady-state currents of TASEPs with local variations in hopping rate. The results are then used to investigate clustering of slow codons along mRNA. Ribosome density profiles near neighboring clusters of slow codons interact, enhancing suppression of ribosome throughput when such bottlenecks are closely spaced. Increasing the slow codon cluster size, beyond 34\approx 3-4, does not significantly reduce ribosome current. Our results are verified by extensive Monte-Carlo simulations and provide a biologically-motivated explanation for the experimentally-observed clustering of low-usage codons

    The statistical mechanics of a polygenic characterunder stabilizing selection, mutation and drift

    Full text link
    By exploiting an analogy between population genetics and statistical mechanics, we study the evolution of a polygenic trait under stabilizing selection, mutation, and genetic drift. This requires us to track only four macroscopic variables, instead of the distribution of all the allele frequencies that influence the trait. These macroscopic variables are the expectations of: the trait mean and its square, the genetic variance, and of a measure of heterozygosity, and are derived from a generating function that is in turn derived by maximizing an entropy measure. These four macroscopics are enough to accurately describe the dynamics of the trait mean and of its genetic variance (and in principle of any other quantity). Unlike previous approaches that were based on an infinite series of moments or cumulants, which had to be truncated arbitrarily, our calculations provide a well-defined approximation procedure. We apply the framework to abrupt and gradual changes in the optimum, as well as to changes in the strength of stabilizing selection. Our approximations are surprisingly accurate, even for systems with as few as 5 loci. We find that when the effects of drift are included, the expected genetic variance is hardly altered by directional selection, even though it fluctuates in any particular instance. We also find hysteresis, showing that even after averaging over the microscopic variables, the macroscopic trajectories retain a memory of the underlying genetic states.Comment: 35 pages, 8 figure

    Catalyst‐mediated enhancement of carbon nanotube textiles by laser irradiation: Nanoparticle sweating and bundle alignment

    Get PDF
    The photonic post-processing of suspended carbon nanotube (CNT) ribbons made by floating catalyst chemical vapor deposition (FC-CVD) results in selective sorting of the carbon nanotubes present. Defective, thermally non-conductive or unconnected CNTs are burned away, in some cases leaving behind a highly crystalline (as indicated by the Raman G:D ratio), highly conductive network. However, the improvement in crystallinity does not always occur but is dependent on sample composition. Here, we report on fundamental features, which are observed for all samples. Pulse irradiation (not only by laser but also white light camera flashes, as well as thermal processes such as Joule heating) lead to (1) the sweating-out of catalyst nanoparticles resulting in molten catalyst beads of up to several hundreds of nanometres in diameter on the textile surface and (2) a significant improvement in CNT bundle alignment. The behavior of the catalyst beads is material dependent. Here, we show the underlying mechanisms of the photonic post-treatment by modelling the macro- and microstructural changes of the CNT network and show that it is mainly the amount of residual catalyst which determines how much energy these materials can withstand before their complete decomposition.</jats:p

    Exploring the Subtle Effect of Aliphatic Ring Size on Minor Actinide-Extraction Properties and Metal Ion Speciation in Bis-1,2,4-Triazine Ligands

    Get PDF
    Calling all actinides! Bis-1,2,4-triazine ligands bearing five-membered rings were synthesized and evaluated as actinide-selective extractants. Tuning the size of the aliphatic ring leads to subtle changes in actinide-extraction properties. The origins of these changes were elucidated at the molecular level, paving the way for the rational design of improved actinide-selective extractants for reprocessing of spent nuclear fuel., The synthesis and evaluation of three novel bis-1,2,4-triazine ligands containing five-membered aliphatic rings are reported. Compared to the more hydrophobic ligands 1–3 containing six-membered aliphatic rings, the distribution ratios for relevant f-block metal ions were approximately one order of magnitude lower in each case. Ligand 10 showed an efficient, selective and rapid separation of AmIII and CmIII from nitric acid. The speciation of the ligands with trivalent f-block metal ions was probed using NMR titrations and competition experiments, time-resolved laser fluorescence spectroscopy and X-ray crystallography. While the tetradentate ligands 8 and 10 formed LnIII^{III} complexes of the same stoichiometry as their more hydrophobic analogues 2 and 3, significant differences in speciation were observed between the two classes of ligand, with a lower percentage of the extracted 1:2 complexes being formed for ligands 8 and 10. The structures of the solid state 1:1 and 1:2 complexes formed by 8 and 10 with YIII^{III}, LuIII^{III} and PrIII^{III} are very similar to those formed by 2 and 3 with LnIII^{III}. Ligand 10 forms CmIII^{III} and EuIII^{III} 1:2 complexes that are thermodynamically less stable than those formed by ligand 3, suggesting that less hydrophobic ligands form less stable AnIII^{III} complexes. Thus, it has been shown for the first time how tuning the cyclic aliphatic part of these ligands leads to subtle changes in their metal ion speciation, complex stability and metal extraction affinity
    corecore