9 research outputs found

    Interesting Properties of p-, d-, and f-Block Elements When Coordinated With Dipicolinic Acid and Its Derivatives as Ligands: Their Use as Inorganic Pharmaceuticals

    Get PDF
    This is a review of the literature concerning the interesting properties of p-, d-, and f-block elements when coordinated with 2,6-pyridinedicarboxylic acid (dipicolinic acid, H2dipic) and its derivatives as ligands, with a focus on their use as inorganic pharmaceuticals. Some of the complexes reported were used as insulin-like, bioimaging contrasting agents, antimicrobial agents, and anticancer agents

    Anticancer, Biophysical and Computational Investigations of Half-Sandwich Ruthenium(II) Thiosemicarbazone Complexes: The Effect of Arene \u3ci\u3eVersus\u3c/i\u3e Thiacrown Face-Cap

    Get PDF
    A series of half-sandwich ruthenium complexes, two containing an arene face-cap and the other a thiacrown ether face-cap were synthesized to investigate the necessity of the arene for anticancer activity in this class of compounds. The complexes are formulated as [(h6-p-cymene)Ru(dmabTSC)Cl]PF6, [(h6-benzene)Ru(dmabTSC)Cl]PF6 (arene complexes), and [([9]aneS3(dmabTSC)Cl]PF6 (dmabTSC = dimethylaminobenzaldehye thiosemicarbazone). It was observed that none of the complexes showed good anticancer activity in vitro against HCT-116 and Caco-2 (colon adenocarcinoma) cells. All three complexes can bind strongly to calf-thymus DNA with binding constants on the order of 105 M-1. In addition they all bind strongly to human serum albumin with binding constants between 105 and 106 M-1. There appears to be a single binding site on the protein for these complexes. A computational investigation of these complexes and their hydrolysis products was carried out by molecular docking with DNA and topoisomerase II. From this analysis it is noted that the type of face-capping ligand had different effects on the two macromolecules. It is therefore noted that the knowledge gained from this study will be useful in identifying the type of complexes in this class that show useful metallodrug potential

    Synthesis, characterization, DNA binding, topoisomerase inhibition, and apoptosis induction studies of a novel cobalt(III) complex with a thiosemicarbazone ligand

    Get PDF
    In this study, 9-anthraldehyde-N(4)-methylthiosemicarbazone (MeATSC) 1 and [Co(phen)(OCO)]Cl·6HO 2 (where phen = 1,10-phenanthroline) were synthesized. [Co(phen)(OCO)]Cl·6HO 2 was used to produce anhydrous [Co(phen)(HO)](NO)3. Subsequently, anhydrous [Co(phen)(HO)](NO)3 was reacted with MeATSC 1 to produce [Co(phen)(MeATSC)](NO)·1.5HO·CHOH 4. The ligand, MeATSC 1 and all complexes were characterized by elemental analysis, FT IR, UV-visible, and multinuclear NMR (H, C, and Co) spectroscopy, along with HRMS, and conductivity measurements, where appropriate. Interactions of MeATSC 1 and complex 4 with calf thymus DNA (ctDNA) were investigated by carrying out UV-visible spectrophotometric studies. UV-visible spectrophotometric studies revealed weak interactions between ctDNA and the analytes, MeATSC 1 and complex 4 (K = 8.1 × 10 and 1.6 × 10 M, respectively). Topoisomerase inhibition assays and cleavage studies proved that complex 4 was an efficient catalytic inhibitor of human topoisomerases I and IIα. Based upon the results obtained from the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay on 4T1-luc metastatic mammary breast cancer cells (IC = 34.4 ± 5.2 μM when compared to IC = 13.75 ± 1.08 μM for the control, cisplatin), further investigations into the molecular events initiated by exposure to complex 4 were investigated. Studies have shown that complex 4 activated both the apoptotic and autophagic signaling pathways in addition to causing dissipation of the mitochondrial membrane potential (ΔΨ). Furthermore, activation of cysteine-aspartic proteases3 (caspase 3) in a time- and concentration-dependent manner coupled with the ΔΨ, studies implicated the intrinsic apoptotic pathway as the major regulator of cell death mechanism

    Ruthenium Complexes: Photochemical and Biomedical Applications

    No full text
    Edited by a team of highly respected researchers combining their expertise in chemistry, physics, and medicine, this book focuses on the use of ruthenium-containing complexes in artificial photosynthesis and medicine. Following a brief introduction to the basic coordination chemistry of ruthenium-containing complexes and their synthesis, as well as their photophysical and photochemical properties, the authors discuss in detail the major concepts of artificial photosynthesis and mechanisms of hydrogen production and water oxidation with ruthenium. The second part of the text covers biological properties and important medical applications of ruthenium-containing complexes as therapeutic agents or in diagnostic imaging. Aimed at stimulating research in this active field, this is an invaluable information source for researchers in academia, health research institutes, and governmental departments working in the field of organometallic chemistry, green and sustainable chemistry as well as medicine/drug discovery, while equally serving as a useful reference also for scientists in industry. [From the back cover]https://digitalcommons.odu.edu/chemistry_books/1002/thumbnail.jp

    Synthesis, Characterization, and Topoisomerase Studies with a Novel Cobalt(III) Complex Coordinated by an Aromatic Bidentate Ligand and N-(3,5-bis(trifluoromethyl)phenyl)pyridine-2-thiocarboxamide

    No full text
    The need for novel antibiotic drugs is urgent. Tuberculosis (TB) is one of the top ten leading causes of death worldwide, with 1.8 million deaths per year, and the number one killer of people who are HIV-positive. The emergence of multidrug-resistant TB (roughly 20% of new cases in 2015) and even extensively drug-resistant TB is a major cause for concern. As the war against bacterial pathogens continues, finding novel drugs and drug targets is essential. Topoisomerase IA is a novel and attractive drug target because it has never yet been targeted by antibiotics used clinically. Since the clinical success of cisplatin as an anticancer drug in the early 19th century, there has been substantial effort to discover novel metal-based therapeutics. In our contribution to the fight against bacterial infection, [[Co(phen)2(PCA-CF3)2)](PF6)2•1.25H2O 1 (where phen = 1,10-phenanthroline and PCA-(CF3)2 = N-(3,5-bis(trifluoromethyl)phenyl)pyridine-2-thiocarboxamide) was synthesized with PCA-(CF3)2 as a mixed ligand. Elemental analysis, FTIR spectroscopy, 1H, 13C, and 59Co NMR spectroscopy, and high resolution electrospray ionization mass spectroscopy were used to determine the structure of complex 1. Complex 1 was tested for inhibition of bacterial topoisomerase I as well as antibacterial activities. Complex 1 had an MtbTopI relaxation inhibition IC50 value of 55.5 µM when compared to an IC50 value of 0.8 µM for [Co(phen)2(MeATSC)](NO3)3·2.5H2O·C2H5OH 2 (where MeATSC = 9-anthraldehyde-N(4)-methylthiosemicarbazone). Complex 1 was able to prevent the growth of M. smegmatis, with an MIC value of 0.89 µM when compared to an MIC value of 6.25 µM for complex 2

    CCDC 1956421: Experimental Crystal Structure Determination

    No full text
    Related Article: Michael J. Celestine, Mark A.W. Lawrence, Nicholas K. Evaristo, Benjamin W. Legere, James K. Knarr, Olivier Schott, Vincent Picard, Jimmie L. Bullock, Garry S. Hanan, Colin D. McMillen, Craig A. Bayse, Alvin A. Holder|2020|Inorg.Chim.Acta|510|119726|doi:10.1016/j.ica.2020.11972

    Anticancer, biophysical and computational investigations of half-sandwich ruthenium(II) thiosemicarbazone complexes: The effect of arene versus thiacrown face-cap

    No full text
    A series of half-sandwich ruthenium complexes, two containing an arene face-cap and the other a thiacrown ether face-cap were synthesized to investigate the necessity of the arene for anticancer activity in this class of compounds. The complexes are formulated as [(h6-p-cymene)Ru(dmabTSC)Cl]PF6, [(h6-benzene)Ru(dmabTSC)Cl]PF6 (arene complexes), and [([9]aneS3(dmabTSC)Cl]PF6 (dmabTSC = dimethylaminobenzaldehye thiosemicarbazone). It was observed that none of the complexes showed good anticancer activity in vitro against HCT-116 and Caco-2 (colon adenocarcinoma) cells. All three complexes can bind strongly to calf-thymus DNA with binding constants on the order of 105 M-1. In addition they all bind strongly to human serum albumin with binding constants between 105 and 106 M. There appears to be a single binding site on the protein for these complexes. A computational investigation of these complexes and their hydrolysis products was carried out by molecular docking with DNA and topoisomerase II. From this analysis it is noted that the type of face-capping ligand had different effects on the two macromolecules. It is therefore noted that the knowledge gained from this study will be useful in identifying the type of complexes in this class that show useful metallodrug potential

    Petition Alleging Violations of the Human Rights of John Melvin Alexander et al. by the United States of America

    No full text

    Synthesis, characterization, DNA binding, topoisomerase inhibition, and apoptosis induction studies of a novel cobalt(III) complex with a thiosemicarbazone ligand

    No full text
    corecore