10 research outputs found

    Disrupting the allosteric interaction between the plasmodium falciparumcAMP-dependent kinase and its regulatory subunit

    Get PDF
    The ubiquitous second messenger cAMP mediates signal transduction processes in the malarial parasite that regulate host erythrocyte invasion and the proliferation of merozoites. In Plasmodium falciparum, the central receptor for cAMP is the single regulatory subunit (R) of protein kinase A (PKA). To aid the development of compounds that can selectively dysregulate parasite PKA signaling, we solved the structure of the PKA regulatory subunit in complex with cAMP and a related analogue that displays antimalarial activity, (Sp)-2-Cl-cAMPS. Prior to signaling, PKA-R holds the kinase's catalytic subunit (C) in an inactive state by exerting an allosteric inhibitory effect. When two cAMP molecules bind to PKA-R, they stabilize a structural conformation that facilitates its dissociation, freeing PKA-C to phosphorylate downstream substrates such as apical membrane antigen 1. Although PKA activity was known to be necessary for erythrocytic proliferation, we show that uncontrolled induction of PKA activity using membrane-permeable agonists is equally disruptive to growth

    Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte to obtain nutrients, grow and replicate

    Get PDF
    Plasmodium falciparum parasites, the causative agents of malaria, modify their host erythrocyte to render them permeable to supplementary nutrient uptake from the plasma and for removal of toxic waste. Here we investigate the contribution of the rhoptry protein RhopH2, in the formation of new permeability pathways (NPPs) in Plasmodium-infected erythrocytes. We show RhopH2 interacts with RhopH1, RhopH3, the erythrocyte cytoskeleton and exported proteins involved in host cell remodeling. Knockdown of RhopH2 expression in cycle one leads to a depletion of essential vitamins and cofactors and decreased de novo synthesis of pyrimidines in cycle two. There is also a significant impact on parasite growth, replication and transition into cycle three. The uptake of solutes that use NPPs to enter erythrocytes is also reduced upon RhopH2 knockdown. These findings provide direct genetic support for the contribution of the RhopH complex in NPP activity and highlight the importance of NPPs to parasite survival

    The triumvirate of signaling molecules controlling Toxoplasma microneme exocytosis: Cyclic GMP, calcium, and phosphatidic acid.

    No full text
    To elicit effective invasion and egress from infected cells, obligate intracellular parasites of the phylum Apicomplexa rely on the timely and spatially controlled exocytosis of specialized secretory organelles termed the micronemes. The effector molecules and signaling events underpinning this process are intricate; however, recent advances within the field of Toxoplasma gondii research have facilitated a broader understanding as well as a more integrated view of this complex cascade of events and have unraveled the importance of phosphatidic acid (PA) as a lipid mediator at multiple steps in this process

    Knockdown of the translocon protein EXP2 in Plasmodium falciparum reduces growth and protein export.

    Get PDF
    Malaria parasites remodel their host erythrocytes to gain nutrients and avoid the immune system. Host erythrocytes are modified by hundreds of effector proteins exported from the parasite into the host cell. Protein export is mediated by the PTEX translocon comprising five core components of which EXP2 is considered to form the putative pore that spans the vacuole membrane enveloping the parasite within its erythrocyte. To explore the function and importance of EXP2 for parasite survival in the asexual blood stage of Plasmodium falciparum we inducibly knocked down the expression of EXP2. Reduction in EXP2 expression strongly reduced parasite growth proportional to the degree of protein knockdown and tended to stall development about half way through the asexual cell cycle. Once the knockdown inducer was removed and EXP2 expression restored, parasite growth recovered dependent upon the length and degree of knockdown. To establish EXP2 function and hence the basis for growth reduction, the trafficking of an exported protein was monitored following EXP2 knockdown. This resulted in severe attenuation of protein export and is consistent with EXP2, and PTEX in general, being the conduit for export of proteins into the host compartment

    Characterization of a serine hydrolase targeted by acyl-protein thioesterase inhibitors in toxoplasma gondii

    No full text
    In eukaryotic organisms, cysteine palmitoylation is an important reversible modification that impacts protein targeting, folding, stability, and interactions with partners. Evidence suggests that protein palmitoylation contributes to key biological processes in Apicomplexa with the recent palmitome of the malaria parasite Plasmodium falciparum reporting over 400 substrates that are modified with palmitate by a broad range of protein S-acyl transferases. Dynamic palmitoylation cycles require the action of an acyl-protein thioesterase (APT) that cleaves palmitate from substrates and conveys reversibility to this posttranslational modification. In this work, we identified candidates for APT activity in Toxoplasma gondii. Treatment of parasites with low micromolar concentrations of β-lactone- or triazole urea-based inhibitors that target human APT1 showed varied detrimental effects at multiple steps of the parasite lytic cycle. The use of an activity-based probe in combination with these inhibitors revealed the existence of several serine hydrolases that are targeted by APT1 inhibitors. The active serine hydrolase, TgASH1, identified as the homologue closest to human APT1 and APT2, was characterized further. Biochemical analysis of TgASH1 indicated that this enzyme cleaves substrates with a specificity similar to APTs, and homology modeling points toward an APT-like enzyme. TgASH1 is dispensable for parasite survival, which indicates that the severe effects observed with the β-lactone inhibitors are caused by the inhibition of non-TgASH1 targets. Other ASH candidates for APT activity were functionally characterized, and one of them was found to be resistant to gene disruption due to the potential essential nature of the protein

    Proteomic analysis reveals novel proteins associated with the Plasmodium protein exporter PTEX and a loss of complex stability upon truncation of the core PTEX component, PTEX150

    Full text link
    The Plasmodium translocon for exported proteins (PTEX) has been established as the machinery responsible for the translocation of all classes of exported proteins beyond the parasitophorous vacuolar membrane of the intraerythrocytic malaria parasite. Protein export, particularly in the asexual blood stage, is crucial for parasite survival as exported proteins are involved in remodelling the host cell, an essential process for nutrient uptake, waste removal and immune evasion. Here, we have truncated the conserved C-terminus of one of the essential PTEX components, PTEX150, in Plasmodium falciparum in an attempt to create mutants of reduced functionality. Parasites tolerated C-terminal truncations of up to 125 amino acids with no reduction in growth, protein export or the establishment of new permeability pathways. Quantitative proteomic approaches however revealed a decrease in other PTEX subunits associating with PTEX150 in truncation mutants, suggesting a role for the C-terminus of PTEX150 in regulating PTEX stability. Our analyses also reveal three previously unreported PTEX-associated proteins, namely PV1, Pf113 and Hsp70-x (respective PlasmoDB numbers; PF3D7_1129100, PF3D7_1420700 and PF3D7_0831700) and demonstrate that core PTEX proteins exist in various distinct multimeric forms outside the major complex

    Optimization of 2‑Anilino 4‑Amino Substituted Quinazolines into Potent Antimalarial Agents with Oral in Vivo Activity

    No full text
    Novel antimalarial therapeutics that target multiple stages of the parasite lifecycle are urgently required to tackle the emerging problem of resistance with current drugs. Here, we describe the optimization of the 2-anilino quinazoline class as antimalarial agents. The class, identified from publicly available antimalarial screening data, was optimized to generate lead compounds that possess potent antimalarial activity against <i>P. falciparum</i> parasites comparable to the known antimalarials, chloroquine and mefloquine. During the optimization process, we defined the functionality necessary for activity and improved <i>in vitro</i> metabolism and solubility. The resultant lead compounds possess potent activity against a multidrug resistant strain of <i>P. falciparum</i> and arrest parasites at the ring phase of the asexual stage and also gametocytogensis. Finally, we show that the lead compounds are orally efficacious in a 4 day murine model of malaria disease burden

    Optimization of 2‑Anilino 4‑Amino Substituted Quinazolines into Potent Antimalarial Agents with Oral in Vivo Activity

    No full text
    Novel antimalarial therapeutics that target multiple stages of the parasite lifecycle are urgently required to tackle the emerging problem of resistance with current drugs. Here, we describe the optimization of the 2-anilino quinazoline class as antimalarial agents. The class, identified from publicly available antimalarial screening data, was optimized to generate lead compounds that possess potent antimalarial activity against <i>P. falciparum</i> parasites comparable to the known antimalarials, chloroquine and mefloquine. During the optimization process, we defined the functionality necessary for activity and improved <i>in vitro</i> metabolism and solubility. The resultant lead compounds possess potent activity against a multidrug resistant strain of <i>P. falciparum</i> and arrest parasites at the ring phase of the asexual stage and also gametocytogensis. Finally, we show that the lead compounds are orally efficacious in a 4 day murine model of malaria disease burden
    corecore