5,739 research outputs found

    Enhancing the cognitive interview with an alternative procedure to witness-compatible questioning: category clustering recall

    Get PDF
    The Cognitive Interview (CI) is one of the most widely studied and used methods to interview witnesses. However, new component techniques for further increasing correct recall are still crucial. We focused on how a new and simpler interview strategy, Category Clustering Recall (CCR), could increase recall in comparison with witness-compatible questioning and tested if a Revised Cognitive Interview (RCI) with CCR instead of witness-compatible questioning and without the change order and change perspective mnemonics would be effective for this purpose. Participants watched a mock robbery video and were interviewed 48 hours later with either the CI or the RCI. Recalled information was classified as either correct, incorrect or confabulation. Although exclusion of the change order and change perspective mnemonics in the RCI group might have caused a slight decrease in recall during the last interview phases, the RCI group generally produced more correct information than the CI group, with a lower number of confabulations. Further analyses revealed CCR was largely responsible for this increase in correct recall. CCR is a very promising interview technique which allowed the interviewer to obtain more detailed information without additional questions and may have, in certain situations, several practical advantages over a questioning phase.N/

    Investigation of phonon behavior in Pr2NiMnO6 by micro-Raman spectroscopy

    Full text link
    The temperature dependence of phonon excitations and the presence of spin phonon coupling in polycrystalline Pr2NiMnO6 samples were studied using micro-Raman spectroscopy and magnetometry. Magnetic properties show a single ferromagnetic-to-paramagnetic transition at 228 K and a saturation magnetization close to 4.95 \muB/f.u.. Three distinct Raman modes at 657, 642, and 511 cm-1 are observed. The phonon excitations show a clear hardening due to anharmonicity from 300 K down to 10 K. Further, temperature dependence of the 657 cm-1 mode shows only a small softening. This reflects the presence of a relatively weak spin-phonon coupling in Pr2NiMnO6 contrary to other double perovskites previously studied.Comment: 10 pages, 4 fig

    Science-Based Recommendations for the Collection of Eyewitness Identification Evidence

    Get PDF
    For almost 70% of the wrongfully convicted defendants who have been exonerated by new DNA evidence, one or more mistaken eyewitness identifications played a role in their wrongful convictions.1 In recognition of the significant role that mistaken identifications play in miscarriages of justice, social scientists have spent the last 40 years studying which police practices can be improved to increase the reliability of eyewitness identification evidence, including instructions to witnesses,2 selecting fillers (i.e., known innocent persons) for lineups or photo arrays who do not cause the suspect to stand out,3 and eliminating possible feedback from administrators who know which lineup member is the suspect.4 Based on this body of research, the American Psychology-Law Society (AP-LS)5 commissioned a panel of eyewitness scholars to review the extant literature and make evidence-based recommendations about the best police practice for enhancing the reliability of eyewitness identification evidence.

    Predators reduce extinction risk in noisy metapopulations

    Get PDF
    Background Spatial structure across fragmented landscapes can enhance regional population persistence by promoting local “rescue effects.” In small, vulnerable populations, where chance or random events between individuals may have disproportionately large effects on species interactions, such local processes are particularly important. However, existing theory often only describes the dynamics of metapopulations at regional scales, neglecting the role of multispecies population dynamics within habitat patches. Findings By coupling analysis across spatial scales we quantified the interaction between local scale population regulation, regional dispersal and noise processes in the dynamics of experimental host-parasitoid metapopulations. We find that increasing community complexity increases negative correlation between local population dynamics. A potential mechanism underpinning this finding was explored using a simple population dynamic model. Conclusions Our results suggest a paradox: parasitism, whilst clearly damaging to hosts at the individual level, reduces extinction risk at the population level

    Effect of ammonium fluoride doping on the ice III to ice IX phase transition

    Get PDF
    Ice III is a hydrogen-disordered phase of ice that is stable between about 0.2 and 0.35 GPa. Upon cooling, it transforms to its hydrogen-ordered counterpart ice IX within the stability region of ice II. Here, the effect of ammonium fluoride doping on this phase transition is investigated, which is followed for the first time with in situ neutron diffraction. The a and c lattice constants are found to expand and contract, respectively, upon hydrogen ordering, yielding an overall negative volume change. Interestingly, the anisotropy in the lattice constants persists when ice IX is fully formed, and negative thermal expansion is observed. Analogous to the isostructural keatite and β-spodumenes, the negative thermal expansion can be explained through the buildup of torsional strain within the a–b plane as the helical “springs” within the structure expand upon heating. The reversibility of the phase transition was demonstrated upon heating. As seen in diffraction and Raman spectroscopy, the ammonium fluoride doping induces additional residual hydrogen disorder in ice IX and is suggested to be a chemical way for the “excitation” of the configurational ice-rules manifold. Compared to ice VIII, the dopant-induced hydrogen disorder in ice IX is smaller, which suggests a higher density of accessible configurational states close to the ground state in ice IX. This study highlights the importance of dopants for exploring the water’s phase diagram and underpins the highly complex solid-state chemistry of ice

    Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system

    Full text link
    A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to neural networks. This paper presents results from an investigation into using discrete and fuzzy dynamical system representations within the XCSF learning classifier system. In particular, asynchronous random Boolean networks are used to represent the traditional condition-action production system rules in the discrete case and asynchronous fuzzy logic networks in the continuous-valued case. It is shown possible to use self-adaptive, open-ended evolution to design an ensemble of such dynamical systems within XCSF to solve a number of well-known test problems

    Effects of an 8-week strength training intervention on tibiofemoral joint loading during landing: a cohort study

    Get PDF
    Objectives To use a musculoskeletal model of the lower limb to evaluate the effect of a strength training intervention on the muscle and joint contact forces experienced by untrained women during landing. Methods Sixteen untrained women between 18 and 28 years participated in this cohort study, split equally between intervention and control groups. The intervention group trained for 8 weeks targeting improvements in posterior leg strength. The mechanics of bilateral and unilateral drop landings from a 30 cm platform were recorded preintervention and postintervention, as was the isometric strength of the lower limb during a hip extension test. The internal muscle and joint contact forces were calculated using FreeBody, a musculoskeletal model. Results The strength of the intervention group increased by an average of 35% (P<0.05; pre: 133±36 n, post: 180±39 n), whereas the control group showed no change (pre: 152±36 n, post: 157±46 n). There were only small changes from pre-test to post-test in the kinematics and ground reaction forces during landing that were not statistically significant. Both groups exhibited a post-test increase in gluteal muscle force during landing and a lateral to medial shift in tibiofemoral joint loading in both landings. However, the magnitude of the increase in gluteal force and lateral to medial shift was significantly greater in the intervention group. Conclusion Strength training can promote a lateral to medial shift in tibiofemoral force (mediated by an increase in gluteal force) that is consistent with a reduction in valgus loading. This in turn could help prevent injuries that are due to abnormal knee loading such as anterior cruciate ligament ruptures,patellar dislocation and patellofemoral pain
    • …
    corecore