694 research outputs found

    The effects of rhythmic structure on tapping accuracy

    Get PDF
    Prior investigations of simple rhythms in familiar time signatures have shown the importance of several mechanisms; notably, those related to metricization and grouping. But there has been limited study of complex rhythms, including those in unfamiliar time signatures, such as are found outside mainstream Western music. Here, we investigate how the structures of 91 rhythms with nonisochronous onsets (mostly complex, several in unfamiliar time signatures) influence the accuracy, velocity, and timing of taps made by participants attempting to synchronize with these onsets. The onsets were piano-tone cues sounded at a well-formed subset of isochronous cymbal pulses; the latter occurring every 234 ms. We modelled tapping at both the rhythm level and the pulse level; the latter provides insight into how rhythmic structure makes some cues easier to tap and why incorrect (uncued) taps may occur. In our models, we use a wide variety of quantifications of rhythmic features, several of which are novel and many of which are indicative of underlying mechanisms, strategies, or heuristics. The results show that, for these tricky rhythms, taps are disrupted by unfamiliar period lengths and are guided by crude encodings of each rhythm: the density of rhythmic cues, their circular mean and variance, and recognizing common small patterns and the approximate positions of groups of cues. These lossy encodings are often counterproductive for discriminating between cued and uncued pulses and are quite different to mechanisms—such as metricization and emphasizing group boundaries—thought to guide tapping behaviours in learned and familiar rhythms

    Evidence on the extent of harms experienced by children as a result of online risks: Implications for policy and research

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Information, Communication and Society on 8/7/2014, available online: http://wwww.tandfonline.com/10.1080/1369118X.2014.934387Intense media and policy focus on issues of online child protection have prompted a resurgence of moral panics about children and adolescents' Internet use, with frequent confounding of different types of risk and harm and little reference to empirical evidence of actual harm. Meanwhile, within the academic literature, the quantity and quality of studies detailing the risks and opportunities of online activity for children and young people has risen substantially in the past 10 years, but this is also largely focused on risk rather than evidence of harm. Whilst this is understandable given the methodological and ethical challenges of studying Internet-related harms to minors, the very concept of risk is dependent on some prior understanding of harm, meaning that without efforts to study what harms are connected with children's online experiences, discussions of risk lack a strong foundation. This article makes a key contribution to the field by reviewing available evidence about the scale and scope of online harms from across a range of disciplines and identifying key obstacles in this research area as well as the major policy implications. The findings are based on a review of 148 empirical studies. Results were found in relation to main types of harms: health-related harms as a result of using pro-eating disorder, self-harm or pro-suicide websites; sex-related harms such as Internet-initiated sexual abuse of minors and cyber-bullying

    Submillimeter observations of IRAS and WISE debris disk candidates

    Get PDF
    A set of six debris disk candidates identified with IRAS or WISE excesses were observed at either 350 μm or 450 μm with the Caltech Submillimeter Observatory. Five of the targets – HIP 51658, HIP 68160, HIP 73512, HIP 76375, and HIP 112460 – have among the largest measured excess emission from cold dust from IRAS in the 25–100 μm bands. Single temperature blackbody fits to the excess dust emission of these sources predict 350–450 μm fluxes above 240 mJy. The final target – HIP 73165 – exhibits weak excess emission above the stellar photosphere from WISE measurements at 22 μm, indicative of a population of warm circumstellar dust. None of the six targets were detected, with 3σ upper limits ranging from 51–239 mJy. These limits are significantly below the expected fluxes from SED fitting. Two potential causes of the null detections were explored – companion stars and contamination. To investigate the possible influence of companion stars, imaging data were analyzed from new adaptive optics data from the ARIES instrument on the 6.5 m MMT and archival HST, Gemini NIRI, and POSS/2MASS data. The images are sensitive to all stellar companions beyond a radius of 1–94 AU, with the inner limit depending on the distance and brightness of each target. One target is identified as a binary system, but with a separation too large to impact the disk. While the gravitational effects of a companion do not appear to provide an explanation for the submm upper limits, the majority of the IRAS excess targets show evidence for contaminating sources, based on investigation of higher resolution WISE and archival Spitzer and Herschel images. Finally, the exploratory submm measurements of the WISE excess source suggest that the hot dust present around these targets is not matched by a comparable population of colder, outer dust. More extensive and more sensitive Herschel observations of WISE excess sources will build upon this initial example to further define the characteristics of warm debris disks sources

    Two-photon quantum walks in an elliptical direct-write waveguide array

    Full text link
    Integrated optics provides an ideal test bed for the emulation of quantum systems via continuous-time quantum walks. Here we study the evolution of two-photon states in an elliptic array of waveguides. We characterise the photonic chip via coherent-light tomography and use the results to predict distinct differences between temporally indistinguishable and distinguishable two-photon inputs which we then compare with experimental observations. Our work highlights the feasibility for emulation of coherent quantum phenomena in three-dimensional waveguide structures.Comment: 8 pages, 7 figure

    Dynamical Mass Measurement of the Young Spectroscopic Binary V343 Normae AaAb Resolved With the Gemini Planet Imager

    Full text link
    We present new spatially resolved astrometry and photometry from the Gemini Planet Imager of the inner binary of the young multiple star system V343 Normae, which is a member of the beta Pictoris moving group. V343 Normae comprises a K0 and mid-M star in a ~4.5 year orbit (AaAb) and a wide 10" M5 companion (B). By combining these data with archival astrometry and radial velocities we fit the orbit and measure individual masses for both components of M_Aa = 1.10 +/- 0.10 M_sun and M_Ab = 0.290 +/- 0.018 M_sun. Comparing to theoretical isochrones, we find good agreement for the measured masses and JHK band magnitudes of the two components consistent with the age of the beta Pic moving group. We derive a model-dependent age for the beta Pic moving group of 26 +/- 3 Myr by combining our results for V343 Normae with literature measurements for GJ 3305, which is another group member with resolved binary components and dynamical masses.Comment: 12 pages, 7 figures. Accepted to A

    Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    Full text link
    We present a new matched filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar Point Spread Function (PSF) is first subtracted using a Karhunen-Lo\'eve Image Processing (KLIP) algorithm with Angular and Spectral Differential Imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the Signal-to-Noise Ratio (SNR) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal SNR loss. We also developed a complete pipeline for the automated detection of point source candidates, the calculation of Receiver Operating Characteristics (ROC), false positives based contrast curves, and completeness contours. We process in a uniform manner more than 330 datasets from the Gemini Planet Imager Exoplanet Survey (GPIES) and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false positive rate. We show that the new forward model matched filter allows the detection of 50%50\% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false positive rate.Comment: ApJ accepte

    GPI spectra of HR 8799 c, d, and e from 1.5 to 2.4μ\mum with KLIP Forward Modeling

    Full text link
    We explore KLIP forward modeling spectral extraction on Gemini Planet Imager coronagraphic data of HR 8799, using PyKLIP and show algorithm stability with varying KLIP parameters. We report new and re-reduced spectrophotometry of HR 8799 c, d, and e in H & K bands. We discuss a strategy for choosing optimal KLIP PSF subtraction parameters by injecting simulated sources and recovering them over a range of parameters. The K1/K2 spectra for HR 8799 c and d are similar to previously published results from the same dataset. We also present a K band spectrum of HR 8799 e for the first time and show that our H-band spectra agree well with previously published spectra from the VLT/SPHERE instrument. We show that HR 8799 c and d show significant differences in their H & K spectra, but do not find any conclusive differences between d and e or c and e, likely due to large error bars in the recovered spectrum of e. Compared to M, L, and T-type field brown dwarfs, all three planets are most consistent with mid and late L spectral types. All objects are consistent with low gravity but a lack of standard spectra for low gravity limit the ability to fit the best spectral type. We discuss how dedicated modeling efforts can better fit HR 8799 planets' near-IR flux and discuss how differences between the properties of these planets can be further explored.Comment: Accepted to AJ, 25 pages, 16 Figure
    • …
    corecore