84 research outputs found

    A Novel t(8;14)(q24;q11) Rearranged Human Cell Line as a Model for Mechanistic and Drug Discovery Studies of NOTCH1-Independent Human T-Cell Leukemia

    Get PDF
    MYC-translocated T-lineage acute lymphoblastic leukemia (T-ALL) is a rare subgroup of T-ALL associated with CDKN2A/B deletions, PTEN inactivation, and absence of NOTCH1 or FBXW7 mutations. This subtype of T-ALL has been associated with induction failure and aggressive disease. Identification of drug targets and mechanistic insights for this disease are still limited. Here, we established a human NOTCH1-independent MYC-translocated T-ALL cell line that maintains the genetic and phenotypic characteristics of the parental leukemic clone at diagnosis. The University of Padua T-cell acute lymphoblastic leukemia 13 (UP-ALL13) cell line has all the main features of the above described MYC-translocated T-ALL. Interestingly, UP-ALL13 was found to harbor a heterozygous R882H DNMT3A mutation typically found in myeloid leukemia. Chromatin immunoprecipitation coupled with high-throughput sequencing for histone H3 lysine 27 (H3K27) acetylation revealed numerous putative super-enhancers near key transcription factors, including MYC, MYB, and LEF1. Marked cytotoxicity was found following bromodomain-containing protein 4 (BRD4) inhibition with AZD5153, suggesting a strict dependency of this particular subtype of T-ALL on the activity of super-enhancers. Altogether, this cell line may be a useful model system for dissecting the signaling pathways implicated in NOTCH1-independent T-ALL and for the screening of targeted anti-leukemia agents specific for this T-ALL subgroup

    An Extensive Quality Control and Quality Assurance (QC/QA) Program Significantly Improves Inter-Laboratory Concordance Rates of Flow-Cytometric Minimal Residual Disease Assessment in Acute Lymphoblastic Leukemia : An I-BFM-FLOW-Network Report

    Get PDF
    Monitoring of minimal residual disease (MRD) by flow cytometry (FCM) is a powerful prognostic tool for predicting outcomes in acute lymphoblastic leukemia (ALL). To apply FCM-MRD in large, collaborative trials, dedicated laboratory staff must be educated to concordantly high levels of expertise and their performance quality should be continuously monitored. We sought to install a unique and comprehensive training and quality control (QC) program involving a large number of reference laboratories within the international Berlin-Frankfurt-Münster (I-BFM) consortium, in order to complement the standardization of the methodology with an educational component and persistent quality control measures. Our QC and quality assurance (QA) program is based on four major cornerstones: (i) a twinning maturation program, (ii) obligatory participation in external QA programs (spiked sample send around, United Kingdom National External Quality Assessment Service (UK NEQAS)), (iii) regular participation in list-mode-data (LMD) file ring trials (FCM data file send arounds), and (iv) surveys of independent data derived from trial results. We demonstrate that the training of laboratories using experienced twinning partners, along with continuous educational feedback significantly improves the performance of laboratories in detecting and quantifying MRD in pediatric ALL patients. Overall, our extensive education and quality control program improved inter-laboratory concordance rates of FCM-MRD assessments and ultimately led to a very high conformity of risk estimates in independent patient cohorts.publishersversionPeer reviewe

    An Extensive Quality Control and Quality Assurance (QC/QA) Program Significantly Improves Inter-Laboratory Concordance Rates of Flow-Cytometric Minimal Residual Disease Assessment in Acute Lymphoblastic Leukemia: An I-BFM-FLOW-Network Report

    Get PDF
    Monitoring of minimal residual disease (MRD) by flow cytometry (FCM) is a powerful prognostic tool for predicting outcomes in acute lymphoblastic leukemia (ALL). To apply FCM-MRD in large, collaborative trials, dedicated laboratory staff must be educated to concordantly high levels of expertise and their performance quality should be continuously monitored. We sought to install a unique and comprehensive training and quality control (QC) program involving a large number of reference laboratories within the international Berlin-Frankfurt-Münster (I-BFM) consortium, in order to complement the standardization of the methodology with an educational component and persistent quality control measures. Our QC and quality assurance (QA) program is based on four major cornerstones: (i) a twinning maturation program, (ii) obligatory participation in external QA programs (spiked sample send around, United Kingdom National External Quality Assessment Service (UK NEQAS)), (iii) regular participation in list-mode-data (LMD) file ring trials (FCM data file send arounds), and (iv) surveys of independent data derived from trial results. We demonstrate that the training of laboratories using experienced twinning partners, along with continuous educational feedback significantly improves the performance of laboratories in detecting and quantifying MRD in pediatric ALL patients. Overall, our extensive education and quality control program improved inter-laboratory concordance rates of FCM-MRD assessments and ultimately led to a very high conformity of risk estimates in independent patient cohorts

    Molecular characterisation and clinical outcome of B-cell precursor acute lymphoblastic leukaemia with IG-MYC rearrangement

    Get PDF
    Rarely, immunophenotypically immature B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) carries an immunoglobulin-MYC rearrangement (IG-MYC-r). This can result in diagnostic confusion with Burkitt lymphoma/leukaemia and use of unproven individualised treatment schedules. Here we contrast the molecular characteristics of these conditions and investigate historic clinical outcome data. We identified 90 cases registered on a national BCP-ALL clinical trial/registry. Where present, diagnostic material underwent cytogenetic, exome, methylome and transcriptome analysis. Outcome was analysed to define 3-year event free survival (EFS) and overall survival (OS). IG-MYC-r was identified in diverse cytogenetic backgrounds, co-existing with either: established BCP-ALL specific abnormalities (high hyperdiploidy n=3, KMT2A-rearrangement n=6, iAMP21 n=1, BCR-ABL n=1); BCL2/BCL6-rearrangements (n=15); or, most commonly, as the only defining feature (n=64). Within this final group, precursor-like V(D)J breakpoints predominated (8/9) and KRAS mutations were common (5/11). DNA methylation identified a cluster of V(D)J rearranged cases, clearly distinct from Burkitt leukaemia/lymphoma. Children with IG-MYC-r within that subgroup had 3-year EFS of 47% and OS of 60%, representing a high-risk BCP-ALL. To develop effective management strategies this patient group must be allowed access to contemporary, minimal residual disease adapted, prospective clinical trial protocols

    Flow cytometry application in hematological malignancies of childhood

    Get PDF
    The PhD research work was performed, for the first part (1 year) at the Pediatric Haematology-Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia University and for the second part (2 years) at the Pediatric Haematology-Oncology Department, Padova University, two excellent setting for a specialized training in pediatric haematology-oncology. The PhD program was targeted in both a clinical and laboratory research experience in order to perform a translational research on pediatric patients affected by a wide range of hematological disorders, both malignant and non-malignant. The efforts were coordinated to study the biology and therapy of pediatric Acute Lymphoblastic Leukemia (ALL), Acute Myeloid Leukemia (AML) and Myelodysplastic Syndromes (MDS)

    Leukemia blast cell identification

    No full text
    Acute leukemia is a heterogeneous group of disorders, characterized by different laboratory and prognostic features. An adequate diagnosis of acute leukemia, based on the identification of a leukemic cell population and the hematopoietic lineage assessment, is the first goal toward defining correct risk stratification of patients and tailoring specific therapies to patients. Diagnosis of acute leukemia underwent an important change since the 1970s when the only available diagnostic tools were cytomorphology and cytochemistry. Nowadays, the development of modern techniques and their combined use in a multimodal approach lead to a better identification and sub-classification of acute leukemia. Thus, blast identification in acute leukemia required a comprehensive global approach, by combining cytomorphology, cytochemistry, multiparameter flow cytometry (MFC), cytogenetic, fluorescence in situ hybridization (FISH) and molecular genetic methods. At least, new sequencing technologies, such as gene expression profiling (GEP) and whole-genome sequencing, DNA methylation arrays, and comparative genomic hybridization array, could represent the new frontiers in the characterization of genetic heterogeneity in acute leukemia. WIREs Data Mining Knowl Discov 2015, 5:74-85. doi: 10.1002/widm.1146 For further resources related to this article, please visit the
    corecore