11 research outputs found

    Environmental and Demographic Determinants of Avian Influenza Viruses in Waterfowl across the Contiguous United States

    Get PDF
    Outbreaks of avian influenza in North American poultry have been linked to wild waterfowl. A first step towards understanding where and when avian influenza viruses might emerge from North American waterfowl is to identify environmental and demographic determinants of infection in their populations. Laboratory studies indicate water temperature as one determinant of environmental viral persistence and we explored this hypothesis at the landscape scale. We also hypothesized that the interval apparent prevalence in ducks within a local watershed during the overwintering season would influence infection probabilities during the following breeding season within the same local watershed. Using avian influenza virus surveillance data collected from 19,965 wild waterfowl across the contiguous United States between October 2006 and September 2009 We fit Logistic regression models relating the infection status of individual birds sampled on their breeding grounds to demographic characteristics, temperature, and interval apparent prevalence during the preceding overwintering season at the local watershed scale. We found strong support for sex, age, and species differences in the probability an individual duck tested positive for avian influenza virus. In addition, we found that for every seven days the local minimum temperature fell below zero, the chance an individual would test positive for avian influenza virus increased by 5.9 percent. We also found a twelve percent increase in the chance an individual would test positive during the breeding season for every ten percent increase in the interval apparent prevalence during the prior overwintering season. These results suggest that viral deposition in water and sub-freezing temperatures during the overwintering season may act as determinants of individual level infection risk during the subsequent breeding season. Our findings have implications for future surveillance activities in waterfowl and domestic poultry populations. Further study is needed to identify how these drivers might interact with other host-specific infection determinants, such as species phylogeny, immunological status, and behavioral characteristics

    Development of a Real-Time Reverse Transcriptase PCR Assay for Type A Influenza Virus and the Avian H5 and H7 Hemagglutinin Subtypes

    No full text
    A real-time reverse transcriptase PCR (RRT-PCR) assay based on the avian influenza virus matrix gene was developed for the rapid detection of type A influenza virus. Additionally, H5 and H7 hemagglutinin subtype-specific probe sets were developed based on North American avian influenza virus sequences. The RRT-PCR assay utilizes a one-step RT-PCR protocol and fluorogenic hydrolysis type probes. The matrix gene RRT-PCR assay has a detection limit of 10 fg or approximately 1,000 copies of target RNA and can detect 0.1 50% egg infective dose of virus. The H5- and H7-specific probe sets each have a detection limit of 100 fg of target RNA or approximately 10(3) to 10(4) gene copies. The sensitivity and specificity of the real-time PCR assay were directly compared with those of the current standard for detection of influenza virus: virus isolation (VI) in embryonated chicken eggs and hemagglutinin subtyping by hemagglutination inhibition (HI) assay. The comparison was performed with 1,550 tracheal and cloacal swabs from various avian species and environmental swabs obtained from live-bird markets in New York and New Jersey. Influenza virus-specific RRT-PCR results correlated with VI results for 89% of the samples. The remaining samples were positive with only one detection method. Overall the sensitivity and specificity of the H7- and H5-specific RRT-PCR were similar to those of VI and HI

    First glimpse into the origin and spread of the Asian longhorned tick, Haemaphysalis longicornis, in the United States

    No full text
    Established populations of Asian longhorned ticks (ALT), Haemaphysalis longicornis , were first identified in the United States (US) in 2017 by sequencing the mitochondrial cytochrome c oxidase subunit I (cox1 ) ‘barcoding’ locus followed by morphological confirmation. Subsequent investigations detected ALT infestations in 12, mostly eastern, US states. To gain information on the origin and spread of US ALT, we (1) sequenced cox1 from ALT populations across 9 US states and (2) obtained cox1 sequences from potential source populations [China, Japan and Republic of Korea (ROK) as well as Australia, New Zealand and the Kingdom of Tonga (KOT)] both by sequencing and by downloading publicly available sequences in NCBI GenBank. Additionally, we conducted epidemiological investigations of properties near its initial detection locale in Hunterdon County, NJ, as well as a broader risk analysis for importation of ectoparasites into the area. In eastern Asian populations (China/Japan/ROK), we detected 35 cox1 haplotypes that neatly clustered into two clades with known bisexual versus parthenogenetic phenotypes. In Australia/New Zealand/KOT, we detected 10 cox1 haplotypes all falling within the parthenogenetic cluster. In the United States, we detected three differentially distributed cox1 haplotypes from the parthenogenetic cluster, supporting phenotypic evidence that US ALT are parthenogenetic. While none of the source populations examined had all three US cox1 haplotypes, a phylogeographic network analysis supports a northeast Asian source for the US populations. Within the United States, epidemiological investigations indicate ALT can be moved long distances by human transport of animals, such as horses and dogs, with smaller scale movements on wildlife. These results have relevant implications for efforts aimed at minimizing the spread of ALT in the United States and preventing additional exotic tick introductions

    First glimpse into the origin and spread of the Asian longhorned tick, Haemaphysalis longicornis,

    No full text
    Established populations of Asian longhorned ticks (ALT), Haemaphysalis longicornis, were first identified in the United States (US) in 2017 by sequencing the mitochondrial cytochrome c oxidase subunit I (cox1) ‘barcoding’ locus followed by morphological confirmation. Subsequent investigations detected ALT infestations in 12, mostly eastern, US states. To gain information on the origin and spread of US ALT, we (1) sequenced cox1 from ALT populations across 9 US states and (2) obtained cox1 sequences from potential source populations [China, Japan and Republic of Korea (ROK) as well as Australia, New Zealand and the Kingdom of Tonga (KOT)] both by sequencing and by downloading publicly available sequences in NCBI GenBank. Additionally, we conducted epidemiological investigations of properties near its initial detection locale in Hunterdon County, NJ, as well as a broader risk analysis for importation of ectoparasites into the area. In eastern Asian populations (China/Japan/ROK), we detected 35 cox1 haplotypes that neatly clustered into two clades with known bisexual versus parthenogenetic phenotypes. In Australia/New Zealand/KOT, we detected 10 cox1 haplotypes all falling within the parthenogenetic cluster. In the United States, we detected three differentially distributed cox1 haplotypes from the parthenogenetic cluster, supporting phenotypic evidence that US ALT are parthenogenetic. While none of the source populations examined had all three US cox1 haplotypes, a phylogeographic network analysis supports a northeast Asian source for the US populations. Within the United States, epidemiological investigations indicate ALT can be moved long distances by human transport of animals, such as horses and dogs, with smaller scale movements on wildlife. These results have relevant implications for efforts aimed at minimizing the spread of ALT in the United States and preventing additional exotic tick introductions

    Live poultry trade in southern China provinces and HPAIV H5N1 infection in humans and poultry: the role of Chinese New Year festivities

    Get PDF
    Background: The number of outbreaks of highly pathogenic avian influenza virus of the H5N1 subtype (HPAIV H5N1) over the past 5 years has been drastically reduced in China but sporadic infections in poultry and humans are still occurring. In this study, we aimed to investigate seasonal patterns in the association between the movement of live poultry originating from southern China and HPAIV H5N1 infection history in humans and poultry in China
    corecore