23 research outputs found

    Development of Bubble Chambers With Enhanced Stability and Sensitivity to Low-Energy Nuclear Recoils

    Full text link
    The viability of using a Bubble Chamber for rare event searches and in particular for the detection of dark matter particle candidates is considered. Techniques leading to the deactivation of inhomogeneous nucleation centers and subsequent enhanced stability in such a detector are described. Results from prototype trials indicate that sensitivity to low-energy nuclear recoils like those expected from Weakly Interacting Massive Particles can be obtained in conditions of near total insensitivity to minimum ionizing backgrounds. An understanding of the response of superheated heavy refrigerants to these recoils is demonstrated within the context of existing theoretical models. We comment on the prospects for the detection of supersymmetric dark matter particles with a large CF3ICF_{3}I chamber.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. Let

    Feasibility study for anaerobic digestion of agricultural crop residues. Final report

    Get PDF
    This study provides cost estimates for the pretreatment/digestion of crop residues to fuel gas. Agricultural statistics indicate that the crop residues wheat straw, corn stover, and rice straw are available in sufficient quantity to provide meaningful supplies of gas. Engineering economic analyses were performed for digestion of sheat straw, corn stover, and rice straw for small farm, cooperative, and industrial scales. The results of the analyses indicate that the production of fuel gas from these residues is, at best, economically marginal, unless a credit can be obtained for digester effluent. The use of pretreatment can double the fuel gas output but will not be economically justifiable unless low chemical requirements or low-cost chemicals can be utilized. Use of low-cost hole-in-the-ground batch digestion results in improved economics for the small farm size digestion system, but not for the cooperative and industrial size systems. Recommendations arising from this study are continued development of autohydrolysis and chemical pretreatment of agricultural crop residues to improve fuel gas yields in an economically feasible manner; development of a low-cost controlled landfill batch digestion process for small farm applications; and determination of crop residue digestion by-product values for fertilizer and refeed

    Feasibility study for anaerobic digestion of agricultural crop residues. Dynatech report No. 1935

    No full text
    The objective of this study was to provide cost estimates for the pretreatment/digestion of crop residues to fuel gas. A review of agricultural statistics indicated that the crop residues wheat straw, corn stover, and rice straw are available in sufficient quantity to provide meaningful supplies of gas. Engineering economic analyses were performed for digestion of wheat straw, corn stover, and rice straw for small farm-, cooperative-, and industrial scales. The small farm scale processed the residue from an average size US farm (400 acres), and the other sizes were two and three orders of magnitude greater. The results of the analyses indicate that the production of fuel gas from these residues is, at best, economically marginal, unless a credit can be obtained for digester effluent. The use of pretreatment can double the fuel gas output but will not be economically justifiable unless low chemical requirements or low cost chemicals can be utilized. Additional development is necessary in this area. Use of low cost hole-in-the-ground batch digestion results in improved economics for the small farm size digestion system, but not for the cooperative and industrial size systems. Recommendations arising from this study are continued development of autohydrolysis and chemical pretreatment of agricultural crop residues to improve fuel gas yields in an economically feasible manner; development of a low cost controlled landfill batch digestion process for small farm applications; and determination of crop residue digestion by-product values for fertilizer and refeed

    A numerical model for methane production in managed sanitary landfills

    No full text
    A mathematical model for the production and transport of biogenic gases in a landfill is developed based on earlier work on the Mountain View Landfill Project in California. The present model incorporates biokinetic model equations for the microbial landfill ecosystems dynamics in a multi-layer, time-dependent gas flow and production model. It is based on first principles of the physics, chemistry, and microbiological processes controlling the production and transport of biogenic gases in a porous media context such as a landfill. The model includes chemical/biokinetic feedback loops for chemical parameter influence on microbiological rate processes. The resulting integrated biokinetic/gas transport model is based on the first principles governing the biokinetics of municipal landfill environment, and the physics of gas-migration. The model was calibrated and verified using approximately 4 years of methane production data from the Mountain View Controlled Landfill Project. Hydrolysis rate appears to be the most sensitive parameter controlling gas generation production. The model can be used to predict the rate and total production of methane in a landfill. <br/
    corecore