55 research outputs found

    Damage detection for a cable-stayed Bridge under the effect of moving loads using Transmissibility and Artificial Neural Network

    Get PDF
    Artificial Neural Network (ANN) has been widely used for Structural Health Monitoring (SHM) in the last decades. To detect damage in the structure, ANN often uses input data consisting of natural frequencies or mode shapes. However, this data is not sensitive enough to accurately identify minor structural defects. Therefore, in this study, we propose to use transmissibility to generate input data for the input layer of ANN. Transmissibility uses output signals exclusively to preserve structural dynamic properties and is sensitive to damage characteristics. To evaluate the efficiency of the proposed approach, a cable-stayed bridge with a wide variety of damage scenarios is employed. The results show that the combination of transmissibility and ANN not only accurately detect damages but also outperforms natural frequencies-based ANN in terms of accuracy and computational cost

    Damage detection for a cable-stayed Bridge under the effect of moving loads using Transmissibility and Artificial Neural Network

    Get PDF
    Artificial Neural Network (ANN) has been widely used for Structural Health Monitoring (SHM) in the last decades. To detect damage in the structure, ANN often uses input data consisting of natural frequencies or mode shapes. However, this data is not sensitive enough to accurately identify minor structural defects. Therefore, in this study, we propose to use transmissibility to generate input data for the input layer of ANN. Transmissibility uses output signals exclusively to preserve structural dynamic properties and is sensitive to damage characteristics. To evaluate the efficiency of the proposed approach, a cable-stayed bridge with a wide variety of damage scenarios is employed. The results show that the combination of transmissibility and ANN not only accurately detect damages but also outperforms natural frequencies-based ANN in terms of accuracy and computational cost

    Heat Dissipation for Microprocessor Using Multiwalled Carbon Nanotubes Based Liquid

    Get PDF
    Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (2000 W/m·K compared with thermal conductivity of Ag 419 W/m·K). This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED). In this work, multiwalled carbon nanotubes (MWCNTs) based liquid was made by COOH functionalized MWCNTs dispersed in distilled water with concentration in the range between 0.2 and 1.2 gram/liter. MWCNT based liquid was used in liquid cooling system to enhance thermal dissipation for computer processor. By using distilled water in liquid cooling system, CPU’s temperature decreases by about 10°C compared with using fan cooling system. By using MWCNT liquid with concentration of 1 gram/liter MWCNTs, the CPU’s temperature decreases by 7°C compared with using distilled water in cooling system. Theoretically, we also showed that the presence of MWCNTs reduced thermal resistance and increased the thermal conductivity of liquid cooling system. The results have confirmed the advantages of the MWCNTs for thermal dissipation systems for the μ-processor and other high power electronic devices

    Class based Influence Functions for Error Detection

    Full text link
    Influence functions (IFs) are a powerful tool for detecting anomalous examples in large scale datasets. However, they are unstable when applied to deep networks. In this paper, we provide an explanation for the instability of IFs and develop a solution to this problem. We show that IFs are unreliable when the two data points belong to two different classes. Our solution leverages class information to improve the stability of IFs. Extensive experiments show that our modification significantly improves the performance and stability of IFs while incurring no additional computational cost.Comment: Thang Nguyen-Duc, Hoang Thanh-Tung, and Quan Hung Tran are co-first authors of this paper. 12 pages, 12 figures. Accepted to ACL 202

    Red light emission of Mn doped beta-tricalcium phosphate -Ca3(PO4)2

    Get PDF
    This paper is the first report on the red light emission of manganese (Mn) doped beta-tricalcium phosphate (b-Ca3(PO4)2, TCP) synthesis by co-precipitation method followed by thermal annealing. The annealed Mn doped TCP phosphor showed dominant spheres with a diameter of about 500 nm. The influences of the Mn concentration, annealing temperature, and atmospheres on the photoluminescence intensities of the phosphors were investigated and the results indicate that the annealing temperatures and Mn concentrations are the main factors. The phosphor showed visible emission peaks appeared at about 660 nm and 580 nm results in from the 4T1-6A1 transitions within Mn2+ ion. The Mn-TCP phosphor may serve as a candidate for light-emitting diode application in agriculture lighting. Keywords. Hydroxyapatite; manganese; luminescence; tricalcium phosphate

    NICKEL-BASED MULTIWALLED CARBON NANOTUBE COMPOSITE COATINGS

    Get PDF
    Carbon nanotubes (CNTs) have been widely known as nanomaterials with excellent mechanical properties. Previous studies reported that the tensile strength of multi-walled carbon nanotubes (MWCNTs) was up to 63 GPa and single-walled carbon nanotubes (SWCNTs) could reach 150 GPa while the highest tensile strength of the steel was found to be about 1.8 GPa. SWCNTs could have Young’s modulus up to 1000 GPa that was much greater than the value of 209 GPa of steel. Therefore, there is a great potential to utilize CNTs as reinforced materials for composites in general and Ni electrodeposition coating in particular to improve hardness, durability, corrosion, and other physical and mechanical properties. This paper presents results of preparing and examining characteristics of the Nickel electrodeposition coatings containing MWCNTs (Ni-MWCNTs). The Ni-MWCNTs composite coatings deposited on a steel plate with the area of 0.4 dm2 using bipolar pulses at 470 Hz and 50oC in a 5-liter bath. Amount of CNTs varying from 1 g/l to 3 g/l was dispersed into the solution by using surfactants and ultrasonic vibration. CNTs used in the study was MWCNTs diameters in the range from 20 to 90 nanometers and few micrometers in length. The SEM, EDS, hardness and adhesion tests were conducted to analyze the properties of the electrodeposition coatings. The obtained results indicated that the hardness and adhesion of the Ni-CNTs coating were 1.5 and 1.46 times, respectively, higher than those of the Ni coating. In addition, adhesion of the Ni-CNTs coating was significantly improved

    Appropriate Antibiotic Use and Associated Factors in Vietnamese Outpatients

    Get PDF
    Background: Inappropriate antibiotic use among outpatients is recognized as the primary driver of antibiotic resistance. A proper understanding of appropriate antibiotic usage and associated factors helps to determine and limit inappropriateness. We aimed to identify the rate of appropriate use of antibiotics and identify factors associated with the inappropriate prescriptions. Methods: We conducted a cross-sectional descriptive study in outpatient antibiotic use at a hospital in Can Tho City, Vietnam, from August 1, 2019, to January 31, 2020. Data were extracted from all outpatient prescriptions at the Medical Examination Department and analyzed by SPSS 18 and Chi-squared tests, with 95% confidence intervals. The rationale for antibiotic use was evaluated through antibiotic selection, dose, dosing frequency, dosing time, interactions between antibiotics and other drugs, and general appropriate usage. Results: A total of 420 prescriptions were 51.7% for females, 61.7% with health insurance, and 44.0% for patients with one comorbid condition. The general appropriate antibiotic usage rate was 86.7%. Prescriptions showed that 11.0% and 9.5% had a higher dosing frequency and dose than recommended, respectively; 10.2% had an inappropriate dosing time; 3.1% had drug interactions; and only 1.7% had been prescribed inappropriate antibiotics. The risk of inappropriate antibiotic use increased in patients with comorbidities and antibiotic treatment lasting >7 days (p < 0.05). Conclusions: The study indicated a need for more consideration when prescribing antibiotics to patients with comorbidities or using more than 7 days of treatment

    Fabrication of graphene from graphite using high-powered ultrasonic vibrators

    No full text
    Fabrication of graphene from graphite using high-powered ultrasonic vibrators</p

    Design of a Solar-Powered Portable ECG Device with Optimal Power Consumption and High Accuracy Measurement

    No full text
    One of the best ways to monitor the health of the heart is to regularly record its electrical activity by using an electrocardiogram (ECG). Abnormal ECG signals may indicate conditions such as heart attack, arrhythmia, or heart defects. There are many ECG devices available which can detect and amplify this differential biological signal from the heart, allowing a lot of information to be collected quickly. The ECG is often small and easy to use, but its power is supplied from regular batteries, which need to be replaced after a certain period of use. This causes discomfort for elderly users. To overcome this limitation, in this paper, we aim to develop a solar-powered, portable Bluetooth device for ECG measurements. The device can be interfaced with smartphones or other wireless devices via Bluetooth by a distance up to 100 m. The ECG device was designed to use solar energy, which is also the main power source. Following the solar energy harvesting circuit is a solar panel with an output voltage of 2.4 V and a power out of 0.25 W. We optimized the design to have a very low power consumption and in sleep mode the current consumption is only around 40 &#181;A. The device was designed with 24-bit resolution and a sampling frequency of up to 2133 Hz, which can allow high accuracy ECG measurements. The device is not only used for heart rate monitoring, but it can also assist doctors in analyzing ECG signals with a high accuracy via embedded operating software
    • …
    corecore