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A B S T R A C T 

 

Artificial Neural Network (ANN) has been widely used for Structural Health Monitoring 

(SHM) in the last decades. To detect damage in the structure, ANN often uses input data 

consisting of natural frequencies or mode shapes. However, this data is not sensitive 

enough to accurately identify minor structural defects. Therefore, in this study, we propose 

to use transmissibility to generate input data for the input layer of ANN. Transmissibility 

uses output signals exclusively to preserve structural dynamic properties and is sensitive 

to damage characteristics. To evaluate the efficiency of the proposed approach, a cable-

stayed bridge with a wide variety of damage scenarios is employed. The results show that 

the combination of transmissibility and ANN not only accurately detect damages but also 

outperforms natural frequencies-based ANN in terms of accuracy and computational cost. 

F. ASMA & H. HAMMOUM (Eds.) special issue, 4th International Conference on Sustainability in 

Civil Engineering ICSCE 2022, Hanoi, Vietnam, J. Mater. Eng. Struct. 9(4) (2022) 

1 Introduction 

In the last decades, Artificial Neural Network (ANN) has been used successfully in Structural Health Monitoring (SHM) 

[1-3]. To detect damages in the structures, ANN often uses input data consisting of natural frequencies and/or mode shapes. 

For instance, Hyeon-Jong Hwang et al. [4] applied ANN to identify the binding performance of tensile slap splices. The 

authors pointed out that the proposed approach offered higher correctness than current design equations. Eissa Fathalla et al. 

[5] used ANN to determine the remaining service life of a concrete bridge. However, the accuracy of the obtained results was 

low, since the overfitting phenomena occurred during the network training process. Eui-YoulKim et al. [6] coupled Wavelet 
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Packet Transform (WPT) with ANN to detect damages of a mechanical machine. WPT was applied to extract abnormal 

sounds (significant features) when the machine operated and ANN was utilized for error classification.  

Most of the previous studies have mainly focused on improving algorithms to increase the efficiency of ANN. However, 

it must be noted that the accuracy of the obtained results after training the network depends crucially on the input data. In 

terms of using ANN for damage detection based on structural dynamic properties, natural frequency, mode shape, or mode 

shape curvature have been commonly used as input data. Nevertheless, these properties not only face major challenges to 

obtain in the field but also are not sensitive enough to accurately identify minor structural defects  

In recent years, the transmissibility function has demonstrated its ability to apply to damage detection problems, since 

this approach solely uses output signals to preserve structural dynamic properties, which are more sensitive to damage 

properties [7] Transmissibility is defined as the ratio between the magnitude of the response amplitude and that of the applied 

amplitude of motion. 

The application of the transmissibility function to detect damages has been conducted by many researchers. For instance, 

Maia et al. [8] employed the transmissibility function to identify the damages of a simply supported beam and a steel beam 

in the laboratory. To compare with the transmissibility function, the Frequency Response Function (FRF) was also utilized. 

The authors concluded that the proposed method outperforms FRF-based data in terms of accuracy. The transmissibility 

function was also applied to detect damages for a simply supported beam in the work of [9]. In this research, transmissibility 

was created by the response of the structure and the vehicles. Zhou et al. [10] proposed combining transmissibility with 

Hierarchical Clustering Analysis (HCA) to detect damages for a numerical model of a 10-floor structure and a free-free beam 

in the laboratory.  

Based on the potential capacity of the transmissibility function for damage detection problems, in this work, we propose 

applying the transmissibility coupled with ANN to detect damages for a cable-stayed bridge. The core idea is to seek sensitive 

features of damaged structures based on input data generated from the transmissibility function. To compare with 

transmissibility-based ANN, natural frequencies-based ANN is also employed. Both single and multiple damages are taken 

into account. Moreover, structural dynamic behaviors are considered under the effect of moving loads. 

Some of the main contributions are summarized as follows: 

 Propose using transmissibility coupled with ANN for damage detection of a cable-stayed bridge under the excitation 

of moving loads. With the best knowledge of the authors, this is the first time, the application of ANN for damage 

detection of a cable-stayed bridge using input data from transmissibility generated by the response of moving loads 

is considered.  

 To compare with the proposed approach, natural frequencies–based ANN is also employed.  

 To evaluate the practical applicability of the method, the influence of noise is fully taken into account. 

 A wide variety of damage scenarios including both single and multiple damages are considered.  

2 Methodology 

2.1 Artificial Neural Network 

The ANN models Fig. 1 were invented and inspired by the principle working of the human nervous system. An ANN 

model includes nerve cells (neurons) linked to each other by parameters (weight and bias). An ANN model includes three 

layers (input layer, hidden layer, and output layer) as shown in Fig.1.  

These layers are connected with each other based on neurons. The numbers of neurons in the input layer and the output 

layer rely on the specific problems that need to be dealt with. An ANN model can employ one or many hidden layers. 

However, no study demonstrates that the network with more hidden layers is more effective than the network using one 

hidden layer. Therefore, to identify the most suitable number of hidden layers for a specific problem, the trial-error process 

should be applied.Training a network consists of two steps including forward and backward processes.  

 Forward process 



 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 9 (2022) 411–420  413 

 

Data set from the input layer is transferred to the hidden layer using the summation function  𝑆1 Eq (1).  

 

Fig. 1 - ANN artchitechture 

 𝑆1 = ∑ 𝑊𝑦1𝑦2
∗ 𝑥𝑦1

𝑌1,𝑌2

1,1

+ 𝑏𝑦2
, 𝑦1 ∈ (1: 𝑌1);  𝑦2 ∈ (1: 𝑌2) 

(1) 

𝒙𝑦1
 is input data; 𝑊𝑦1𝑦2

 and 𝑏𝑦2
 are training parameters; 𝑦1,𝑦2 are 𝑦1 

𝑡ℎand 𝑦2 
𝑡ℎneurons in the input layer and the hidden 

layer; 𝑌1 and 𝑌2 are the total numbers of neuron in the input layer and the hidden layer. After that, the output (𝑇1) of the 

hidden layer is obtained using the sigmoid function 𝑇1 Eq(2).  

𝑇1 =
1

1 + 𝑒− 𝑆1
 

(2) 

The same process is applied to transfer data from the hidden layer to the output layer using Eq (3)-(4). 

 𝑆2 = ∑ 𝑊𝑦2𝑦3
∗ 𝑇1

𝑌2,𝑌3

1,1

+ 𝑏𝑦3
, 𝑦3 ∈ (1: 𝑌3) 

(3) 

 𝑆2 is the input of the output layer; 𝑦3 and 𝑌3 are 𝑦3 
𝑡ℎ in the output layer, and the total number of neurons in the output 

layer, respectively.  

𝑇2 =
1

1 + 𝑒−𝑆2
 

(4) 

𝑇2is the output of the output layer. 

The differences between calculated and desired outputs (𝑇2
𝑖 and �̅�2

𝑖) are computed.      

  ∇(𝑊, 𝑏) = ∑ 0.5 ∗
(𝑇2

𝑖 − �̅�2
𝑖)2

𝑛

𝑛

𝑖=1

 
(5) 

𝑖 and 𝑛 in turn are 𝑖𝑡ℎ data and the total number of data.  

To reduce the deviation of  ∇(W, b), the backward process is employed by tuning training parameters (W, b) depicted in 

 Eq (6) to Eq (22). 
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 Backward process (backpropagation) 

Turn training parameters that connect the hidden layer and the output layer.  

𝜕∇(𝑊, 𝑏)

𝜕𝑊𝑦2𝑦3

=
𝜕 𝑆2

𝜕𝑊𝑦2𝑦3

∗
𝜕𝑇2

𝜕 𝑆2
∗

𝜕∇(𝑊, 𝑏)

𝜕𝑇2
 (6) 

∇(𝑊, 𝑏)

𝜕𝑏𝑦3

=
𝜕 𝑆2

𝜕𝑏𝑦3

∗
𝜕𝑇2

𝜕 𝑆2
∗

𝜕∇(𝑊, 𝑏)

𝜕𝑇2
 (7) 

𝜕∇(𝑊, 𝑏)

𝜕𝑇2
= −(𝑇2̅ − 𝑇2) (8) 

𝜕𝑇2

𝜕 𝑆2
=  

𝑒− 𝑆2

(1 + 𝑒− 𝑆2)2
 (9) 

𝜕 𝑆2

𝜕𝑊𝑦2𝑦3

= 𝑇1; 
𝜕 𝑆2

𝜕𝑏𝑦3

= 1; (10) 

𝑊𝑦2𝑦3

+ = 𝑊𝑦2𝑦3
− 𝜏 ∗

𝜕∇(𝑊, 𝑏)

𝜕𝑊𝑦2𝑦3

 
 

     (11) 

𝑏𝑦3

+ = 𝑏𝑦3
− 𝜏 ∗

∇(𝑊, 𝑏)

𝜕𝑏𝑦3

      (12) 

Turn training parameters that connect the input layer and the hidden layer.  

𝜕∇(𝑊, 𝑏)

𝜕𝑊𝑦1𝑦2

=
𝜕 𝑆1

𝜕𝑊𝑦1𝑦2

∗
𝜕𝑇1

𝜕 𝑆1
∗

𝜕∇(𝑊, 𝑏)

𝜕𝑇1
 (13) 

∇(𝑊, 𝑏)

𝜕𝑏𝑦2

=
𝜕 𝑆1

𝜕𝑏𝑦2

∗
𝜕𝑇1

𝜕 𝑆1
∗

𝜕∇(𝑊, 𝑏)

𝜕𝑇1
 (14) 

𝜕𝑇1

𝜕 𝑆1
=  

𝑒− 𝑆1

(1 + 𝑒− 𝑆1)2
 (15) 

𝜕 𝑆1

𝜕𝑊𝑦1𝑦2

= 𝑥𝑦1
;  

𝜕 𝑆1

𝜕𝑏𝑦2

= 1; (16) 

𝑊𝑦1𝑦2

+ = 𝑊𝑦1𝑦2
− 𝜏 ∗

𝜕∇(𝑊, 𝑏)

𝜕𝑊𝑦1𝑦2

     (17) 

𝑏𝑦2

+ = 𝑏𝑦2
− 𝜏 ∗

∇(𝑊, 𝑏)

𝜕𝑏𝑦2

     (18) 

𝑾𝒚𝟐𝒚𝟑

+ , 𝒃𝒚𝟑

+, 𝑾𝒚𝟏𝒚𝟐

+, 𝒃𝒚𝟐

+
are new training parameters between the input layer - the hidden layer, and the hidden layer 

- the output layer, respectively. 𝝉 is the learning rate.  

2.2 Transmissilbity  

Transmissibility performs the response ratio between two Degrees of Freedom (DoF) [11]. The process of calculating 

the transmissibility is depicted below.   

If 𝐹𝑙 is a force vector at node 𝑙; 𝑋𝑖 , and𝑋𝑗 are responses (amplitude of displacement) at point 𝑖, 𝑗, respectively, the 

relationship between 𝐹𝑙 and 𝑋𝑖 , 𝑋𝑗 can be estimated as Eq. (19) and (20): 
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 𝑋𝑖(𝜔) = 𝐻(𝑖,𝑙)(𝜔)𝐹𝑙(𝜔) (19) 

 𝑋𝑗(𝜔) = 𝐻(𝑗,𝑙)(𝜔)𝐹𝑙(𝜔) (20) 

Where 𝐻(𝑖,𝑙)and 𝐻(𝑗,𝑙) represents the Frequency Response Function (FRF) at point 𝑖 and 𝑗 to 𝑙. The transmissibility 

(𝑇(𝑖,𝑗)) is calculated by using Eq. (21). 

 𝑇(𝑖,𝑗) =
𝐻(𝑖,𝑙)(𝜔)

𝐻(𝑗,𝑙)(𝜔)
=

𝑋𝑖(𝜔)/𝐹𝑙(𝜔)

𝑋𝑗(𝜔)/𝐹𝑙(𝜔)
 (21) 

The short form of Eq. (21) can be presented in Eq.(22): 

 𝑇(𝑖,𝑗)(𝜔) =
𝑋𝑖(𝜔)

𝑋𝑗(𝜔)
 (22) 

Where 𝑋𝑖 and 𝑋𝑗 are responses at points 𝑖 and 𝑗 in the frequency domain. 

Using a similar approach asErreur ! Source du renvoi introuvable., a Damage Indicator (DI) can be identified using 

Eq. (23): 

 𝐷𝐼 = ∫ 𝑇𝑅 𝑑𝑓
𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛

 (23) 

Where the interval [𝑓𝑚𝑎𝑥; 𝑓𝑚𝑖𝑛] is the frequency bandwidth of interest for the specific problem. 

3 Application of the proposed approach for damage detection problem 

3.1 Numerical model 

To investigate the effectiveness of the proposed approach, a cable-stayed bridge (Kien bridge) is employed. Kien bridge 

is located in Hai Phong (see Fig. 2) that crosses the Cam river, is on Highway 10 and connects Thuy Nguyen and An Duong 

districts. The bridge includes three spans with a length of 85m + 200m + 85m. The bridge has a total of 72 stay cables 

distributed on two tower plane with the length from 20m to 103m. 

 

Fig. 2 - Kien bridge. 

Fig. 3 provides an overview of the Finite Element Model (FEM) of Kien bridge. This model is constructed using Stabil 

toolbox in Matlab [12]  

The model consists of 645 nodes, 1354 elements, and 3093 DoFs. The bridge is modeled utilizing three-dimensional 

beam elements including 6 DoFs at each node. The bottom of the tower is fixed and movable bearings are put at the end of 

the bridge. A summary of the section’s properties of components is given in Table 1.  
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Fig. 3 - FEM of Kien Bridge 

Table 1 - The section’s properties of components in Kien bridge 

No Types of elements ID 
Areas (m2) Moment of Inertia (m4) Moment of Inertia (m4) 

𝑨 𝑰𝒚𝒚 𝑰𝒛𝒛 

1 Main Beam 1 8 2.980833333 2.98083333 

2 Cross beam 2 3 2.125 2.125 

3 Web 3 3 2.125 2.125 

4 Tower 4 8 7.06666667 1.666666667 

5 Cable type 1 5 0.070686 0.000397608 0.000397608 

6 Cable type 2 6 0.113411 0.001023539 0.001023539 

 

Table 2  lists the material parameters used in the model. 

Table 2 lists the material parameters used in the model. 

Table 2 - Material properties 

Elements ID 
Young's modulus Poison’s ratio Volumetric mass density 

Gpa 𝝁 kg/m3 

Main beam 𝑬𝟏 23.00 0.35 2400 

Cross beam 𝑬𝟐 23.00 0.35 2400 

Web 𝑬𝟑 40.00 0.35 2400 

Tower 𝑬𝟒 38.68 0.35 2400 

Cable type 1 𝑬𝟓 160.00 0.2 7850 

Cable type 2 𝑬𝟔 173.00 0.2 7850 

3.2 Input and target data for the network. 

For comparison, two data sets including natural frequencies and transmissibility are used. We assume that the damages 

are generated by reducing the stiffness of elements (only consider damages for cable elements). For single damage, the 

stiffness of each cable element reduces from 0% to 50% with an interval of 1%. In this case, there are 50 (the number of 

damaged scenarios of one element)*36 (the number of cables) = 1800 damage scenarios. For multiple damages, the stiffness 

of two elements is reduced at the same time. Therefore, a total of 706860 damaged cases are created. To consider the practical 

applicability of the method, 2% of the noise is used. The ANN architecture is shown in Fig. 5.  
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Fig. 4 – ANN architectures 

The input data for the two models is the transmissibility damage index calculated by Eq.(23) and the natural frequencies 

of the first 12 modes. The input layer and the hidden layer include 12 neurons and 25 neurons, respectively, whereas the 

output layer consists of the damage level and damage location.  

4 Results 

In this section, the obtained results are analyzed for both single and multiple damage cases. 

4.1 Single damage. 

Fig. 5 and Fig. 6 show that the 𝑅-value calculated using input data of the transmissibility function (0.99999) is higher 

than using input data of natural frequencies (0.99974). On the other hand, the second approach (input data based on 

transmissibility function) also reduces computational time compared to the first one (input data based on natural frequencies), 

at 37.52 (s), and 58.26 (s), respectively.  

 

 

  

Fig. 5 – 𝑹-value in single damage using natural 

frequencies – based ANN 

Fig. 6 – 𝑹-value in single damage using transmissibility 

function– based ANN 
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Fig. 7 – MSE-value in single damage using natural 

frequencies – based ANN 

Fig. 8 – MSE-value in single damage using 

transmissibility function– based ANN 

 

In terms of accuracy, Fig. 7 and Fig. 8 show that the method using input data based on the transmissibility function also 

surpasses that applying input data based on natural frequencies. The error between the calculated and real values of the first 

and the second approach is 0.0028011 and 0.084624, respectively. 

 In this work, we only apply 1000 epochs to train the network for both cases. The reason is that after 1000 epochs, the 

convergence of the network using natural frequencies-based ANN almost does not change. In the contrast, the convergence 

of the network applying transmissibility-based ANN still improve (go down). In the other word, the main aim of this work is 

to compare the effectiveness of transmissibility-based ANN with that of natural frequencies-based ANN. Therefore, the 

network using 1000 epochs can satisfy the aim. 

4.2 Multiple damage  

  

Fig. 9 – 𝑹-value in multiple damage using natural 

frequencies – based ANN 

Fig. 10 – 𝑹-value in multiple damage using 

transmissibility function– based ANN 
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Fig. 11  – MSE-value in multiple damage using natural 

frequencies – based ANN 

Fig. 12 – MSE-value in multiple damage using 

transmissibility function– based ANN 

From Fig. 9 to Fig. 12, we can see that the method using input data based on the transmissibility function outperforms 

the method using input data based on the natural frequencies in terms of both 𝑅-value (0.98356, 0.97468)  and MSE-values 

(6.1486, and 8.6621), respectively.  Moreover, the first method requires lower computational time to train the network than 

the second one, with 354.98 (s) and 422.36(s),respectively.  

5 Conclusions 

In terms of using ANN for damage detection based on structural dynamic properties, natural frequency, mode shape, or 

mode shape curvature have been commonly used as input data. However, these methods not only face major challenges to 

obtain in the field but also are not sensitive enough to accurately identify minor structural defects. Therefore, we propose 

using data obtained from the transmissibility function as input data to train the network. Besides, in this work, structural 

dynamic behaviours are collected under the effect of moving load. To compare with the proposed approach, natural 

frequency-based ANN is also employed. Based on obtained results, some main conclusions are drawn. Both the proposed 

methods and frequency-based ANN provide results with a high degree of accuracy. This demonstrates via 𝑅-values ( 𝑅-

values higher than 0.9) and convergence level (convergence level close to 0). Transmissibility-based ANN outperforms 

frequency-based ANN in terms of accuracy even the effect of noise is taken into account. The proposed method also reduces 

computational time compared to frequency-based ANN. 
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