906 research outputs found

    Ultrafast photodoping and effective Fermi-Dirac distribution of the Dirac particles in Bi2Se3

    Full text link
    We exploit time- and angle- resolved photoemission spectroscopy to determine the evolution of the out-of-equilibrium electronic structure of the topological insulator Bi2Se. The response of the Fermi-Dirac distribution to ultrashort IR laser pulses has been studied by modelling the dynamics of the hot electrons after optical excitation. We disentangle a large increase of the effective temperature T* from a shift of the chemical potential mu*, which is consequence of the ultrafast photodoping of the conduction band. The relaxation dynamics of T* and mu* are k-independent and these two quantities uniquely define the evolution of the excited charge population. We observe that the energy dependence of the non-equilibrium charge population is solely determined by the analytical form of the effective Fermi-Dirac distribution.Comment: 5 Pages, 3 Figure

    Unusual Shubnikov-de Haas oscillations in BiTeCl

    Full text link
    We report measurements of Shubnikov-de Haas (SdH) oscillations in single crystals of BiTeCl at magnetic fields up to 31 T and at temperatures as low as 0.4 K. Two oscillation frequencies were resolved at the lowest temperatures, F1=65±4F_{1}=65 \pm 4 Tesla and F2=156±5F_{2}=156 \pm 5 Tesla. We also measured the infrared optical reflectance (R(ω))\left(\cal R(\omega)\right) and Hall effect; we propose that the two frequencies correspond respectively to the inner and outer Fermi sheets of the Rashba spin-split bulk conduction band. The bulk carrier concentration was ne≈1×1019n_{e}\approx1\times10^{19} cm−3^{-3} and the effective masses m1∗=0.20m0m_{1}^{*}=0.20 m_{0} for the inner and m2∗=0.27m0m_{2}^{*}=0.27 m_{0} for the outer sheet. Surprisingly, despite its low effective mass, we found that the amplitude of F2F_{2} is very rapidly suppressed with increasing temperature, being almost undetectable above T≈4T\approx4 K

    Ultrafast Optical Control of the Electronic Properties of ZrTe5ZrTe_5

    Get PDF
    We report on the temperature dependence of the ZrTe5ZrTe_5 electronic properties, studied at equilibrium and out of equilibrium, by means of time and angle resolved photoelectron spectroscopy. Our results unveil the dependence of the electronic band structure across the Fermi energy on the sample temperature. This finding is regarded as the dominant mechanism responsible for the anomalous resistivity observed at T* ∌\sim 160 K along with the change of the charge carrier character from holelike to electronlike. Having addressed these long-lasting questions, we prove the possibility to control, at the ultrashort time scale, both the binding energy and the quasiparticle lifetime of the valence band. These experimental evidences pave the way for optically controlling the thermoelectric and magnetoelectric transport properties of ZrTe5ZrTe_5

    BiTeCl and BiTeBr: a comparative high-pressure optical study

    Full text link
    We here report a detailed high-pressure infrared transmission study of BiTeCl and BiTeBr. We follow the evolution of two band transitions: the optical excitation ÎČ\beta between two Rashba-split conduction bands, and the absorption Îł\gamma across the band gap. In the low pressure range, p<4p< 4~GPa, for both compounds ÎČ\beta is approximately constant with pressure and Îł\gamma decreases, in agreement with band structure calculations. In BiTeCl, a clear pressure-induced phase transition at 6~GPa leads to a different ground state. For BiTeBr, the pressure evolution is more subtle, and we discuss the possibility of closing and reopening of the band gap. Our data is consistent with a Weyl phase in BiTeBr at 5−-6~GPa, followed by the onset of a structural phase transition at 7~GPa.Comment: are welcom

    Evidence of reduced surface electron-phonon scattering in the conduction band of Bi_{2}Se_{3} by non-equilibrium ARPES

    Full text link
    The nature of the Dirac quasiparticles in topological insulators calls for a direct investigation of the electron-phonon scattering at the \emph{surface}. By comparing time-resolved ARPES measurements of the TI Bi_{2}Se_{3} with different probing depths we show that the relaxation dynamics of the electronic temperature of the conduction band is much slower at the surface than in the bulk. This observation suggests that surface phonons are less effective in cooling the electron gas in the conduction band.Comment: 5 pages, 3 figure

    The momentum and photon energy dependence of the circular dichroic photoemission in the bulk Rashba semiconductors BiTeX (X = I, Br, Cl)

    Get PDF
    Bulk Rashba systems BiTeX (X = I, Br, Cl) are emerging as important candidates for developing spintronics devices, because of the coexistence of spin-split bulk and surface states, along with the ambipolar character of the surface charge carriers. The need of studying the spin texture of strongly spin-orbit coupled materials has recently promoted circular dichroic Angular Resolved Photoelectron Spectroscopy (cd-ARPES) as an indirect tool to measure the spin and the angular degrees of freedom. Here we report a detailed photon energy dependent study of the cd-ARPES spectra in BiTeX (X = I, Br and Cl). Our work reveals a large variation of the magnitude and sign of the dichroism. Interestingly, we find that the dichroic signal modulates differently for the three compounds and for the different spin-split states. These findings show a momentum and photon energy dependence for the cd-ARPES signals in the bulk Rashba semiconductor BiTeX (X = I, Br, Cl). Finally, the outcome of our experiment indicates the important relation between the modulation of the dichroism and the phase differences between the wave-functions involved in the photoemission process. This phase difference can be due to initial or final state effects. In the former case the phase difference results in possible interference effects among the photo-electrons emitted from different atomic layers and characterized by entangled spin-orbital polarized bands. In the latter case the phase difference results from the relative phases of the expansion of the final state in different outgoing partial waves.Comment: 6 pages, 4 figure

    Universal response of the type-II Weyl semimetals phase diagram

    Get PDF
    The discovery of Weyl semimetals represents a significant advance in topological band theory. They paradigmatically enlarged the classification of topological materials to gapless systems while simultaneously providing experimental evidence for the long-sought Weyl fermions. Beyond fundamental relevance, their high mobility, strong magnetoresistance, and the possible existence of even more exotic effects, such as the chiral anomaly, make Weyl semimetals a promising platform to develop radically new technology. Fully exploiting their potential requires going beyond the mere identification of materials and calls for a detailed characterization of their functional response, which is severely complicated by the coexistence of surface- and bulk-derived topologically protected quasiparticles, i.e., Fermi arcs and Weyl points, respectively. Here, we focus on the type-II Weyl semimetal class where we find a stoichiometry-dependent phase transition from a trivial to a non-trivial regime. By exploring the two extreme cases of the phase diagram, we demonstrate the existence of a universal response of both surface and bulk states to perturbations. We show that quasi-particle interference patterns originate from scattering events among surface arcs. Analysis reveals that topologically non-trivial contributions are strongly suppressed by spin texture. We also show that scattering at localized impurities generate defect-induced quasiparticles sitting close to the Weyl point energy. These give rise to strong peaks in the local density of states, which lift the Weyl node significantly altering the pristine low-energy Weyl spectrum. Visualizing the microscopic response to scattering has important consequences for understanding the unusual transport properties of this class of materials. Overall, our observations provide a unifying picture of the Weyl phase diagram

    Momentum resolved spin dynamics of bulk and surface excited states in the topological insulator Bi2Se3\mathrm{Bi_{2}Se_{3}}

    Full text link
    The prospective of optically inducing a spin polarized current for spintronic devices has generated a vast interest in the out-of-equilibrium electronic and spin structure of topological insulators (TIs). In this Letter we prove that only by measuring the spin intensity signal over several order of magnitude in spin, time and angle resolved photoemission spectroscopy (STAR-PES) experiments is it possible to comprehensively describe the optically excited electronic states in TIs materials. The experiments performed on Bi2Se3\mathrm{Bi_{2}Se_{3}} reveal the existence of a Surface-Resonance-State in the 2nd bulk band gap interpreted on the basis of fully relativistic ab-initio spin resolved photoemission calculations. Remarkably, the spin dependent relaxation of the hot carriers is well reproduced by a spin dynamics model considering two non-interacting electronic systems, derived from the excited surface and bulk states, with different electronic temperatures.Comment: 5 pages and 4 figure

    Pharmacy practice research - A call to action.

    Full text link
    Pharmacists have a societal duty of care. How to best provide that type of care requires scientific study. Pharmacy practice is a scientific discipline that studies the different aspects of the practice of pharmacy, and its impact on health care systems, medicine use, and patient care. Its scope has expanded globally to encompass clinical, behavioural, economic, and humanistic implications of the practice of pharmacy, as well as practice change and implementation in routine practice of innovations such as health interventions and patient-care services. The development, impact evaluation, implementation, and sustainability of health interventions and patient-care services represents a key research area for pharmacy practice. An approach for conducting these is provided. There is evidence that collaborative national and international research in this area is growing, showing an increased contribution to global health research. The role of universities and pharmacy professional associations in supporting the advancement of pharmacy through pharmacy practice research is also discussed. Finally, a call to action for pharmacy practice research, education, and practice is made

    AntVideoRecord: Autonomous system to capture the locomotor activity of leafcutter ants

    Get PDF
    The leafcutter ants (LCA) are considered plague in a great part of the American continent, causing great damage in production fields. Knowing the locomotion and foraging rhythm in LCA on a continuous basis would imply a significant advance for ecological studies, fundamentally of animal behavior. However, studying the forage rhythm of LCA in the field involves a significant human effort. This also adds a risk of subjective results due to the operator fatigue. In this work a new development named ‘AntVideoRecord’ is proposed to address this issue. This device is a low-cost autonomous system that records videos of the LCA path in a fixed position. The device can be easily reproduced using the freely accessible source code provided. The evaluation of this novel device was successful because it has exceeded all the basic requirements in the field: record continuously for at least seven days, withstand high and low temperatures, capture acceptable videos during the day and night, and have a simple configuration protocol by mobile devices and laptops. It was possible to confirm the correct operation of the device, being able to record more than 1900 h in the field at different climate conditions and times of the day. 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCANII: FMV 15605
    • 

    corecore