The nature of the Dirac quasiparticles in topological insulators calls for a
direct investigation of the electron-phonon scattering at the \emph{surface}.
By comparing time-resolved ARPES measurements of the TI Bi_{2}Se_{3} with
different probing depths we show that the relaxation dynamics of the electronic
temperature of the conduction band is much slower at the surface than in the
bulk. This observation suggests that surface phonons are less effective in
cooling the electron gas in the conduction band.Comment: 5 pages, 3 figure