The prospective of optically inducing a spin polarized current for spintronic
devices has generated a vast interest in the out-of-equilibrium electronic and
spin structure of topological insulators (TIs). In this Letter we prove that
only by measuring the spin intensity signal over several order of magnitude in
spin, time and angle resolved photoemission spectroscopy (STAR-PES) experiments
is it possible to comprehensively describe the optically excited electronic
states in TIs materials. The experiments performed on Bi2Se3
reveal the existence of a Surface-Resonance-State in the 2nd bulk band gap
interpreted on the basis of fully relativistic ab-initio spin resolved
photoemission calculations. Remarkably, the spin dependent relaxation of the
hot carriers is well reproduced by a spin dynamics model considering two
non-interacting electronic systems, derived from the excited surface and bulk
states, with different electronic temperatures.Comment: 5 pages and 4 figure