9,291 research outputs found

    On the energy and baseline optimization to study effects related to the δ-phase (CP-/T-violation) in neutrino oscillations at a neutrino factory

    Get PDF
    In this paper we discuss the detection of CP- and T-violation effects in the framework of a neutrino factory. We introduce three quantities, which are good discriminants for a non-vanishing complex phase (δ) in the 3 × 3 neutrino mixing matrix: Δδ, ΔCP and ΔT. We find that these three discriminants (in vacuum) all scale with L/Ev, where L is the baseline and Ev the neutrino energy. Matter effects modify the scaling, but these effects are large enough to spoil the sensitivity only for baselines larger than 5000 km. So, in the hypothesis of constant neutrino factory power (i.e., number of muons inversely proportional to muon energy), the sensitivity on the δ-phase is independent of the baseline chosen. Specially interesting is the direct measurement of T-violation from the "wrong-sign" electron channel (i.e., the ΔT discriminant), which involves a comparison of the ve → vμ and vμ → ve oscillation rates. However, the vμ → ve measurement requires magnetic discrimination of the electron charge, experimentally very challenging in a neutrino detector. Since the direction of the electron curvature has to be estimated before the start of the electromagnetic shower, low-energy neutrino beams and hence short baselines, are preferred. In this paper we show, as an example, the exclusion regions in the Δm212-δ plane using the ΔCP and ΔT discriminants for two concrete cases keeping the same L/Ev ratio (730 km/7.5 GeV and 2900 km/30 GeV). We obtain a similar excluded region provided that the electron detection efficiency is ∼20% and the charge confusion 0.1%. The Δm212 compatible with the LMA solar data can be tested with a flux of 5 × 1021 muons. We compare these results with the fit of the visible energy distributions. © 2002 Elsevier Science B.V. All rights reserved

    A dual-mode generalized likelihood ratio approach to self-reorganizing digital flight control system design

    Get PDF
    The research is reported on the problems of failure detection and reliable system design for digital aircraft control systems. Failure modes, cross detection probability, wrong time detection, application of performance tools, and the GLR computer package are discussed

    Geometrical foundations of fractional supersymmetry

    Get PDF
    A deformed qq-calculus is developed on the basis of an algebraic structure involving graded brackets. A number operator and left and right shift operators are constructed for this algebra, and the whole structure is related to the algebra of a qq-deformed boson. The limit of this algebra when qq is a nn-th root of unity is also studied in detail. By means of a chain rule expansion, the left and right derivatives are identified with the charge QQ and covariant derivative DD encountered in ordinary/fractional supersymmetry and this leads to new results for these operators. A generalized Berezin integral and fractional superspace measure arise as a natural part of our formalism. When qq is a root of unity the algebra is found to have a non-trivial Hopf structure, extending that associated with the anyonic line. One-dimensional ordinary/fractional superspace is identified with the braided line when qq is a root of unity, so that one-dimensional ordinary/fractional supersymmetry can be viewed as invariance under translation along this line. In our construction of fractional supersymmetry the qq-deformed bosons play a role exactly analogous to that of the fermions in the familiar supersymmetric case.Comment: 42 pages, LaTeX. To appear in Int. J. Mod. Phys.

    Sampling design may obscure species–area relationships in landscape-scale field studies

    Get PDF
    We investigated 1) the role of area per se in explaining anuran species richness on reservoir forest islands, after controlling for several confounding factors. We also assessed 2) how sampling design affects the inferential power of island species–area relationships (ISARs) aiming to 3) provide guidelines to yield reliable estimates of area-induced species losses in patchy systems. We surveyed anurans with autonomous recording units at 151 plots located on 74 islands and four continuous forest sites at the Balbina Hydroelectric Reservoir landscape, central Brazilian Amazonia. We applied semi-log ISAR models to assess the effect of sampling design on the fit and slope of species–area curves. To do so, we subsampled our surveyed islands following both a 1) stratified and 2) non-stratified random selection of 5, 10, 15, 20 and 25 islands covering 1) the full range in island size (0.45–1699 ha) and 2) only islands smaller than 100 ha, respectively. We also compiled 25 datasets from the literature to assess the generality of our findings. Island size explained ca half of the variation in species richness. The fit and slope of species–area curves were affected mainly by the range in island size considered, and to a very small extent by the number of islands surveyed. In our literature review, all datasets covering a range of patch sizes larger than 300 ha yielded a positive ISAR, whereas the number of patches alone did not affect the detection of ISARs. We conclude that 1) area per se plays a major role in explaining anuran species richness on forest islands within an Amazonian anthropogenic archipelago; 2) the inferential power of island species–area relationships is severely degraded by sub-optimal sampling designs; 3) at least 10 habitat patches spanning three orders of magnitude in size should be surveyed to yield reliable species–area estimates in patchy systems

    On the energy and baseline optimization to study effects related to the δ\delta-phase (CP-/T-violation) in neutrino oscillations at a Neutrino Factory

    Get PDF
    In this paper we discuss the detection of CP and T-violation effects in the framework of a neutrino factory. We introduce three quantities, which are good discriminants for a non vanishing complex phase (δ\delta) in the 3×33\times 3 neutrino mixing matrix. We find that these three discriminants (in vacuum) all scale with L/EνL/E_{\nu}. Matter effects modify the scaling, but these effects are large enough to spoil the sensitivity only for baselines larger than 5000 km. So, in the hypothesis of constant neutrino factory power, the sensitivity on the δ\delta-phase is independent of the baseline chosen. Specially interesting is the direct measurement of T-violation from the ``wrong-sign'' electron channel, which involves a comparison of the \nue\ra\numu and \numu\ra\nue oscillation rates. However, the \numu\ra\nue measurement requires magnetic discrimination of the electron charge, experimentally very challenging in a neutrino detector: low-energy neutrino beams and hence short baselines, are preferred. In this paper we show the exclusion regions in the Δm122−δ\Delta m^2_{12} - \delta plane for two concrete cases. We obtain a similar excluded region provided that the electron detection efficiency is ∼\sim20% and the charge confusion 0.1%. The Δm122\Delta m^2_{12} compatible with the LMA solar data can be tested with a flux of 5×1021\times 10^{21} muons. We compare these results with the fit of the visible energy distributions.Comment: 58 pages, 24 figure

    Scattering polarization in the CaII Infrared Triplet with Velocity Gradients

    Full text link
    Magnetic field topology, thermal structure and plasma motions are the three main factors affecting the polarization signals used to understand our star. In this theoretical investigation, we focus on the effect that gradients in the macroscopic vertical velocity field have on the non-magnetic scattering polarization signals, establishing the basis for general cases. We demonstrate that the solar plasma velocity gradients have a significant effect on the linear polarization produced by scattering in chromospheric spectral lines. In particular, we show the impact of velocity gradients on the anisotropy of the radiation field and on the ensuing fractional alignment of the CaII levels, and how they can lead to an enhancement of the zero-field linear polarization signals. This investigation remarks the importance of knowing the dynamical state of the solar atmosphere in order to correctly interpret spectropolarimetric measurements, which is important, among other things, for establishing a suitable zero field reference case to infer magnetic fields via the Hanle effect.Comment: 14 pages, 10 figures, 3 appendixes, accepted for publication in Ap

    Microarray gene expression profiling of neural tissues in bovine spastic paresis

    Get PDF
    Abstract: Background: Bovine Spastic Paresis (BSP) is a neuromuscular disorder which affects both male and female cattle. BSP is characterized by spastic contraction and overextension of the gastrocnemious muscle of one or both limbs and is associated with a scarce increase in body weight. This disease seems to be caused by an autosomal and recessive gene, with incomplete penetration, although no genes clearly involved with its onset have been so far identified. We employed cDNA microarrays to identify metabolic pathways affected by BSP in Romagnola cattle breed. Investigation of those pathways at the genome level can help to understand this disease. Results: Microarray analysis of control and affected individuals resulted in 268 differentially expressed genes. These genes were subjected to KEGG pathway functional clustering analysis, revealing that they are predominantly involved in Cell Communication, Signalling Molecules and Interaction and Signal Transduction, Diseases and Nervous System classes. Significantly enriched KEGG pathway's classes for the differentially expressed genes were calculated; interestingly, all those significantly under-expressed in the affected samples are included in Neurodegenerative Diseases. To identify genome locations possibly harbouring gene(s) involved in the disease, the chromosome distribution of the differentially expressed genes was also investigated. Conclusions: The cDNA microarray we used in this study contains a brain library and, even if carrying an incomplete transcriptome representation, it has proven to be a valuable tool allowing us to add useful and new information to a poorly studied disease. By using this tool, we examined nearly 15000 transcripts and analysed gene pathways affected by the disease. Particularly, our data suggest also a defective glycinergic synaptic transmission in the development of the disease and an alteration of calcium signalling proteins. We provide data to acquire knowledge of a genetic disease for which literature still presents poor results and that could be further and specifically analysed in the next future. Moreover this study, performed in livestock, may also harbour molecular information useful for understanding human diseases
    • …
    corecore