https://ntrs.nasa.gov/search.jsp?R=19760010792 2020-03-22T16:12:00+00:00Z

ESL-IR-642

#### ELECTRONIC SYSTEMS LABORATORY Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge, Massachusetts 02139

(NASA-CB-146396)A DUAL-MODE GENEBALIZEDN76-17880LIKELIHOODATIO APPECACH TOHC 56.00SELF-PEOFGANIZING DIGITAL FLIGHT CONTROLSYSTEM DESIGNHesearch Status Report,SYSTEM DESIGNResearch Status Report,Unclas15 Mar. - 30 Yov. 1975(Massachusetts Inst. G3/6314219

## Research Status Report #2

A DUAL-MODE GENERALIZED LIKELIHOOD RATIO APPROACH TO SELF-REORGANIZING DIGITAL FLIGHT CONTROL SYSTEM DESIGN

## NASA Langle' Grant NSG-1112

Covers work from March 15, 1975 to November 30, 1975



Prepared by:

1. A.M. ....

Ramon Bueno Edward Chow Dr. Stanley B. Gershwin Prof. Alan S. Willsky (Principal Investigator)

Submitted to:

- (1) NASA Scientific and Technical Information Facility Post Office Box 33 College Park, Maryland 20740
- (2) Dr. Raymond C. Montgomery Theoretical Mechanics Branch Flight Dynamics and Control Division NASA Langley Research Center Hampton, Virginia 22365

#### I. Introduction

In this report we summarize the results of the research efforts under Grant NSG-1112 from March 15, 1975 through November 30, 1975. The personnel involved in this project during this period were Prof. A.S. Willsky, Dr. S. B. Gershwin, Mr. R. Bueno, and Mr. E. Chow. Mr. Bueno and Mr. Chow are graduate students working towards S.M. degree and theses based on their work on this project will be forthcoming (February 1965 for Chow and September 1976 for Bueno).

Before we outline the report, we first describe several other activities related to this grant. As we see it, the purpose of this research effort is to perform a fundamental study of the problem of failure detection and reliable system design for digital aircraft control systems. The research efforts described herein represents a major step in this study; and at the end of this report we will outline several of the step which will be examined next. In addition to this work, Prof. Willsky undertook a detailed survey of failure detection methods, and this effort culminated in the survey paper [3], which is included as Appendix A. Also, during this time period, close contact was established with staff at the Charles Stark Draper Laboratory (in particular Mr. J. C. Deckert, Dr. J. J. Deyst, Jr., Specifically, and Dr. M. Desai) working on NASA Langley Contract NAS1-13914. Prof. Willsky has been involved on a regular basis as a consultant, and Mr. E. Chow will join the CSDL research staff on this project on a full-time basis beginning in mid-January. This project, which is of a more applied nature than Grant NSG-1112, has complemented the research at the Electronic Systems Laboratory quite well. The CSDL program has provided a test-bed for

many of the concepts developed at ESL; it has also suggested several new, fundamental issues which will be explored at ESL; the TSL project has provided a learning experience for graduate students who can then fit into the ongoing CSDL project; and, finally, the results of the CSDL study will provide several important pieces in our overall effort to develop a faulttolerant control system design methodology. We feel that the present cooperative arrangement between ESL and CSDL provides an ideal balance for research and development in this area.

As background for the work described in this report, we refer the reader to the earlier research report [2]. We review some of the notation and the problem formulation. We have concentrated our attention on four basic "failure modes":

1. State step

 $x(k + 1) = \Phi(k + 1, k)x(k) + w(k) + \sigma_{k+1,\theta}^{\nu}$ z(k) = H(k)x(k) + v(k)

2. State jump  $x(k + 1) = \Phi(k + 1, k)x(k) + w(k) + \delta_{k+1}, \theta^{V}$ z(k) = H(k)x(k) + v(k)

3. Sensor step

 $x(k+1) = \Phi(k+1, k)x(k) + w(k)$  $z(k) = H(k)x(k) + v(k) + \sigma_{k,\theta}^{\nu}$ 

1. Sensor jump

 $\mathbf{x}(\mathbf{k} + 1) = \Phi(\mathbf{k} + 1, \mathbf{k})\mathbf{x}(\mathbf{k}) + \mathbf{w}(\mathbf{k})$  $\mathbf{z}(\mathbf{k}) = H(\mathbf{k})\mathbf{x}(\mathbf{k}) + \mathbf{v}(\mathbf{k}) + \frac{\delta_{\mathbf{k}}}{\kappa_{\mathbf{k}}\theta^{U}}$ 

-2-

We have proposed a number of other failure models, but have concentrated on these four, since they provide a simple and analytically tractable framework for this basic study and also since i is felt that detectors based on these models should be able to detect other failures (such as "off failures").

Recall that the GLR approach involves the implementation of a Kalman filter based on a "no failure" assumption. In this case the filter innovations take the form

$$\gamma(\mathbf{k}) = G_{\mathbf{k}}(\mathbf{k}; \theta) \vee + \gamma(\mathbf{k})$$

where  $\tilde{\gamma}$  is the residual if there is no failure,  $\nu$  is the failure magnitude,  $\theta$  the failure time, and i the failure mode. The precomputable matrix  $G_i(k; \theta)$  is called the <u>failure signature</u> and characterizes the way in which a failure of type i propagates through the system and filter. The GLR system examines the residuals, determines if there is a failure, and then estimates the time and magnitude of the failure, as well as deciding on failure type. In order to keep the detector computationally tractable, we search over a "window of residuals" -- i.e. we restrict our estimate of  $\theta$  to lie in the range

ita haad 2000 ah waari waaa

A slightly simplified version of GLR is <u>simplified GLR</u> (SGLR) in which one hypothesizes a value for v, thus avoiding the problem of estimation of v. The utility of this approach is that it is quite similar in performance characteristics to GLR, it requires less computation, and it is more readily analyzed than full GLR (see the next section).

In the previous report, we developed the basic GLK and SGLR equations

=3=

for all four failure modes, and described the first steps in developing a GLR computer package. In this report we describe progress along several lines. Section II deals with several analytical  $t_{1}$ 's that have been and are being developed in order to gain insight into the workings of GLR and also to provide some tools for the inevitable design tradeoff studies. We consider the usual probabilities of false alarm and correct detection, but we also define and consider several other probabilities of interest. One of these is called <u>cross detection probability</u>, and it represents a measure of the indistinguishability of different failure modes. The other is <u>wrong time detection</u> (i.e. detecting a failure at the incorrect time). This is a useful piece of information in evaluating the overall performance of GLR, since, if some of the wrong time probabilities are large, one can improve overall detector performance by examining a window of values for  $\theta$ . A number of issues involving these performance measures are discussed in Section II.

In Section III we describe the test problem used in our studies. We have used a second order, simplified hodel of the longitudinal dynamics of the F-8 aircraft. In Section IV we discuss the application of the performance tools of Section II to the test problem, and in Section V we describe the results of a set of simulation runs. We have attempted in this latter section to describe the qualitative behavior of detector performance. Section VI contains a description of the GLR computer package that has been developed. The present package allows one to perform a variety of analytical tests (Sec. II) and to simulate system performance. One can run several types of detectors simultaneously, thus allowing a study of cross-detection behavior. In addition, one can design detectors based on one system model

11 1- 1- 1- H

and can simulate its performance when the real system is different. This option will allow us to study the robustness of the detector.

32.

We note that the presentation given here is somewhat unpolished as it represents a status and not a final report. Thus, there are numerous loose ends and open questions throughout the report. We have collected these in Section VII in which we describe the next tasks to be undertaken. More finished descriptions of our research will be forthcoming (specifically, in the theses of Chow and Bueno).

> an garagan sa kasar na kasar n Kasar na kas

-5-

#### II. Performance : asures and probability computations

In this section, we report our efforts in studying the performance of the GLR technique. We define the probabilities of correct detection, false alarm, cross detection and wrong time as some measures of performance. Since these quantities provide incomplete evaluation of the detection scheme, their significance and limitations are discussed. It is shown that these probabilities require the evaluation of chi squared and gaussian integrals for the full GLR and simplified GLR respectivel. Computational algorithms for such probabilities are presented. is an example of applying these performance measures, probabilities of correct detections and false alarms for the second order model of the F-8 aircraft are considered in Section IV. Such analytical results will be verified 'v the simulation studies described in a later section (Section V).

The probabilities of correct detection  $(P_D)$ , false alarm  $(P_F)$ , cross detection  $(P_{i/j})$  and wrong time  $(P_{\theta/\theta_{i}})$  are defined as follows.

 $P_{D} = Prob (l(k; \theta) > \varepsilon | \alpha = \beta, \nu, \nu = \theta_{t})$   $P_{F} = Prob (l(k; \theta) > \varepsilon | \alpha \neq 0, \beta = 0, \nu = 0)$   $P_{i/j} = Prob (l(k; \theta) > \varepsilon | \alpha = i, \beta = j, \alpha \neq \beta, \nu, \theta = \theta_{t})$   $P_{\theta/\theta_{t}} = Prob (l(k; \theta) > \varepsilon | \alpha = \beta, \nu, \theta \neq \theta_{t})$ 

where  $\alpha$  denotes the failure mode that the GLR detector is based upon and  $\beta$  denotes the type of failure that actually occurs. Both  $\alpha$  and  $\beta$  may take the values 1, 2, 3, or 4 representing the four modes of failures. The value of 0 for  $\beta$  is used for the case that no failure occurs. Also,  $\theta_{t}$  is the true time of failure;  $\theta$  is the hypothesized time of failure;  $\nu$  is the true failure vector; and  $\varepsilon$  is the threshold.

-6-

There are many aspects to the evaluation of a detection scheme and a single index is not sufficient to indicate the quality of the scheme. The above probabilities are some convenient quantities defined in order to study some aspects of the GLR detector performance.  $P_D$  is the confidence that one would have in the detector since it is the probability of detecting a failure when a failure actually occurred.  $P_F$  measures the negative quality of the detector as it is the probability that a failure is signaled while no failure has occurred. Both  $P_{i/j}$  and  $P_{\theta/\theta_t}$  are more subtle measures of performance, since they pertain to the ability of the detector to distinguish failures of different types and different failure times respectively.

Note that these probabilities are defined at each point in time assuming no knowledge of the  $l(k; \theta)$  at other times. It is clear that  $l(k; \theta)$  and  $l(j; \phi)$  are correlated whenever the intervals  $[\theta, k]$  and  $[\phi, j]$ overlap. Since the GLR detector operates over ranges of values of k and  $\theta$ (both as real time and as hypothesized failure time vary), a better set of performance measures might be "interval" versions of the probabilities defined earlier. For example, one might be interested in determining probabilities such as

 $P_D^* = \operatorname{Prob}\left(\ell(k;\theta) > \varepsilon \mid \alpha = \beta, \nu, \theta = \theta_t, \ell(j;\theta) < \varepsilon, \theta \leq j < k\right)$ This is the probability that we will <u>first</u> detect the failure at time k and is extremely useful in evaluating delay time in detection.

The modified probabilities require the joint densities of  $l(k; \theta)$ and  $l(j; \phi)$  which are difficult to compute in the full GLR case since correlated noncentral Chi squared  $(\chi^2)$  random variables are involved.

-7-

However, in the simplified GLR case,  $\ell(k; \theta)$  and  $\ell(j; \phi)$  are jointly distributed gaussian random variables, and the study of the modified probabilities is easier in this case and hopefully will lead to a better understanding of the full GLR. This study will be included in the next report.

For the computation of the probabilities defined at the beginning of this section, the density functions of  $l(k; \theta)$  under the stated conditions are required. It is shown in II.1 that the full GLR is a noncentral  $\chi^2$  random variable while the simplified GLR is a gaussian random variable (II.2). The computation of noncentral  $\chi^2$  probabilities is considered in II.3. The noncentrality parameter  $(\delta^2)$  of the  $\chi^2$  density and the mean of the guassian density of GLR systems reflect the effect of the failures on the  $l(k; \theta)$ . In II.4, these parameters are examined under the condition of correct detection.

## II.1 Full GLR probability density

Consider a detector that hypothesizes a type i failure with failure time =  $\theta$  while an actual failure v of type j occurred at  $\theta_t$ . The actual residuals and GLR outputs then are given by

$$\gamma(\mathbf{k}) = \widetilde{\gamma}(\mathbf{k}) + G_{j}(\mathbf{k}; \theta_{t}) \vee$$

$$d(\mathbf{k}; \theta) = \sum_{m=\theta}^{k} G_{i}^{\dagger}(\mathbf{m}; \theta) \nabla^{-1}(\mathbf{m}) \gamma(\mathbf{m})$$

$$= \sum_{m=\theta}^{k} G_{i}^{\dagger}(\mathbf{m}; \theta) \nabla^{-1}(\mathbf{m}) [\widetilde{\gamma}(\mathbf{m}) + G_{j}(\mathbf{m}; \theta_{t}) \vee]$$

$$\ell(\mathbf{k}; \theta) = d^{\dagger}(\mathbf{k}; \theta) C_{i/i}^{-1}(\mathbf{k}; \theta/\theta) d(\mathbf{k}; \theta)$$

where

-8-

 $G_j(k;\,\theta)$  is the G matrix corresponding to a type j failure,  $\widetilde{\gamma}(k)$  is the unbiased, white part of the residual, and

$$C_{i/i}(k; \theta/\theta) \stackrel{\Delta}{=} \sum_{m=0}^{k} G_{i}(m; \theta) V^{-1}(m) G_{i}(m; \theta)$$

Note that  $C_{i/i}(k; \theta/\theta) = C(k; \theta)$  of a type i detector.

Since  $v^{-1}(m)$  is a positive definite symmetrix matrix,  $C_{i/i}(k; \theta/\theta)$  is positive semi-definite symmetric matrix. Then there exist an orthonormal matrix T such that

$$\Lambda_{i/i}(k; \theta/\theta) = T^{-1}C_{i/i}(k; \theta/\theta)T$$

where  $\Lambda_{i/i}(k; \theta/\theta)$  is a diagonal matrix and the diagonal elements are the eigenvalues  $\lambda_1, \lambda_2 \dots \lambda_n$  of  $C_{i/i}(k; \theta/\theta)$  (n is the dimension of  $C_{i/i}(k; \theta/\theta)$ ). Assuming  $C_{i/i}^{-1}(k; \theta/\theta)$  exists, define  $\ell(k; \theta) = \{d'(k; \theta) T \} \{ T^{-1} C_{i/i}^{-1}(k; \theta/\theta) T \} \{ T^{-1} d(k; \theta) \}$  $\frac{\Delta}{\pi} v'(k; \theta) \Lambda_{i/i}^{-1}(k; \theta_1) v(k; \theta_2)$ 

Then  $v(k; \theta)$  is a guassian random vector:

$$v(k; \theta) = T' \sum_{m=\theta}^{k} G_{i}'(m; \theta) v^{-1}(m) [\tilde{\gamma}(m) + G_{j}(m; \theta_{t})v]$$

$$E\{v(k; \theta)\} = T' \sum_{m=\theta}^{k} G_{i}'(m; \theta) v^{-1}(m) G_{j}(m; \theta_{t})v$$

$$\stackrel{\triangle}{=} T'C_{i/j}(k; \theta/\theta_{t})v$$

 $E\{v(k; \theta)v'(k; \theta)\}$ 

= 
$$T^{*}C_{i/i}^{(k;\theta/\theta)T} + T^{*}C_{i/j}^{(k;\theta/\theta_{t})\vee\vee^{T}C_{i/j}^{*}(k;\theta/\theta_{t})^{T}}$$
  
=  $\Lambda_{i/i}^{(k;\theta/\theta)} + [E[v(k;\theta)] [E[v(k;\theta)]]^{*}$ 

Hence  $\Lambda_{i/i}(k; \theta/\theta)$  is the covariance of  $v(k; \theta)$ . Since  $\Lambda_{i/i}(k; \theta/\theta)$  is diagonal, elements of  $v(k; \theta)$  are independent of one another.  $l(k; \theta)$  can be expressed as the summation:

$$\ell(\mathbf{k}; \theta) = \sum_{m=1}^{n} \frac{\mathbf{v}_{m}^{2}(\mathbf{k}; \theta)}{\lambda_{m}}$$

where  $v_m(k; \theta)$  is the m<sup>th</sup> component of  $v(k; \theta)$ . Then each term in the above summation is the square of a gaussian random variable with unit variance and mean of  $\frac{\overline{v_m}^2(k; \theta)}{\lambda_m}$  ( $\overline{v_m}(k; \theta)$  is the mean of  $v_m(k; \theta)$ ). Therefore,  $l(k; \theta)$  is a noncentral  $\chi^2$  random variable with n degrees of freedom. The noncentrality parameter ( $\delta^2$ ) can be shown to be

$$\delta^{2} = [E\{v(k; \theta)\}]' \Lambda^{-1}_{i/i} (k; \theta/\theta) [E\{v(k; \theta)\}]$$
$$= v C_{i/j}'(k; \theta/\theta_{t}) C_{i/i}^{-1} (k; \theta/\theta) C_{i/j}(k; \theta/\theta_{t}) v$$

Note that no assumption is made on i, j,  $\theta$  and  $\theta_t$ . The derivation includes the conditions defining  $P_D$ ,  $P_F$ ,  $P_{i/j}$  and  $P_{\theta/\theta_t}$  as special cases as well as others which are not considered presently. In any event,  $\ell(\mathbf{k}; \theta)$  is a noncentral  $\chi^2$  random variable with n degrees of freedom and  $\delta^2$  dependent on the conditions hypothesized. Specializing to the four cases of current interest, we have,

(1)  $P_D: \theta = \theta_t, i = j$   $\delta^2 = v' C_{i/i}(k; \theta/\theta) v$ (2)  $P_F: i = j, v = 0$   $\delta^2 = 0$  $\ell(k; \theta)$  becomes a central  $\chi^2$  random variable

-10-

(3) 
$$P_{i/j} = i \neq j, \ \theta = \theta_t$$
  
 $\delta^2 = v' c'_{i/j} \quad (k; \ \theta/\theta) c^{-1}_{i/i} \quad (k; \ \theta)c_{i/j} \quad (k; \ \theta/\theta)$   
(4)  $P_{\theta/\theta_t} = i = j \quad \theta \neq \theta_t$ 

Note that the different relationships among  $\theta$ ,  $\theta_t$ , k have different physical meanings, for instance,

....

then

$$\delta^{2} = v' c'_{i/i}(k; \theta/\theta_{t}) c_{i/i}(k; \theta/\theta) c_{i/i}(k; \theta/\theta_{t}) v$$

The probabilities  $(P_D, P_F, P_{i/j}, P_{\theta/\theta_t})$  are simply the integral of the density functions of  $l(k; \theta)$  from  $l = \varepsilon$  to  $l = +\infty$ .

## II.2 Simplified GLR probability density

Consider a simplified GLR (SGLR) detector set to detect a failure  $v_0$  of type i with failing time = 0 while a true failure v of type j actually occurred at  $\theta_{\pm}$ .

$$\gamma(\mathbf{k}) = \tilde{\gamma}(\mathbf{k}) + G_{j} (\mathbf{k}: \theta_{t}) v$$

-11-

$$\begin{split} \varrho(\mathbf{k}_{j} \ \theta) &= \sum_{\mathbf{m}=0}^{\mathbf{k}} \left[ 2\Upsilon(\mathbf{m}) - G_{\mathbf{i}}(\mathbf{m}_{j} \ \theta) \upsilon_{0} \mathbf{j}^{\dagger} \mathbf{v}^{-1}(\mathbf{m}) G_{\mathbf{i}}(\mathbf{m}_{j} \ \theta) \upsilon_{0} \right] \\ &= \sum_{\mathbf{m}=0}^{\mathbf{k}} 2\widetilde{\Upsilon}(\mathbf{m}) \mathbf{v}^{-1}(\mathbf{m}) G_{\mathbf{i}}(\mathbf{m}_{j} \ \theta) \upsilon_{0} \\ &+ 2 \sum_{\mathbf{m}=0}^{\mathbf{k}} \upsilon^{\dagger} G_{\mathbf{j}}^{\dagger}(\mathbf{m}_{j} \ \theta_{\mathbf{t}}) \mathbf{v}^{-1}(\mathbf{m}) G_{\mathbf{i}}(\mathbf{m}_{j} \ \theta) \upsilon_{0} \\ &- \upsilon_{0}^{\dagger} \sum_{\mathbf{m}=0}^{\mathbf{k}} G_{\mathbf{i}}^{\dagger}(\mathbf{m}_{j} \ \theta) \mathbf{v}^{-1}(\mathbf{m}) G_{\mathbf{i}}(\mathbf{m}_{j} \ \theta) \upsilon_{0} \\ &= \sum_{\mathbf{m}=0}^{\mathbf{k}} 2 \upsilon_{0}^{\dagger} G_{\mathbf{i}}^{\dagger}(\mathbf{m}_{j} \ \theta) \mathbf{v}^{-1}(\mathbf{m}) \mathbf{v}_{0} \\ &+ 2 \upsilon_{0}^{\dagger} G_{\mathbf{i}}^{\dagger}(\mathbf{m}_{j} \ \theta) \mathbf{v}^{-1}(\mathbf{m}) \widetilde{\Upsilon}(\mathbf{m}) \\ &+ 2 \upsilon_{0}^{\dagger} C_{\mathbf{i}/\mathbf{j}}(\mathbf{k}_{j} \ \theta/\theta_{\mathbf{t}}) \upsilon_{0} - \upsilon_{0}^{\dagger} C_{\mathbf{i}/\mathbf{i}}(\mathbf{k}_{j} \ \theta/\theta) \upsilon_{0} \end{split}$$

Since  $\tilde{\gamma}(m)$  are zero mean, independent gaussian random vectors,  $l(k; \theta)$  is a gaussian random variable with mean  $(\overline{l})$  and variance  $(\sigma^2)$ :

$$\overline{\underline{\ell}} = E\{\ell(k; \theta)\} = 2\nu'_{o} C_{i/j}(k; \theta/\theta_{t}) - \nu'_{o} C_{i/i}(k; \theta/\theta) \nu_{o}$$

$$\sigma^{2} = E\{\ell(k; \theta) - \overline{\ell}\}^{2}\}$$

$$= 4\nu'_{o} \sum_{m=\theta}^{k} G_{i}(m; \theta) \nu^{-1}(m) G_{i}(m; \theta) \nu_{o}$$

$$= 4\nu'_{o} C_{i/i}(k; \theta) \nu_{o}$$

Note that the variance is the same for all cases whereas the mean varies. For the four cases of interest:

(1) 
$$P_{D}$$
:  $i = j, \theta = \theta_{t}, v = v_{o}$   
 $\overline{\ell} = v' C_{i/i}(k; \theta/\theta)v$ 

-12-

et.

ан 1.1

:

: : : :

•

-

-

-

(2) 
$$P_{p}: i = j \quad v = 0$$
  
 $\overline{k} = -v_{O}^{*}C_{i/i}(k;\theta/\theta)v_{O}$   
(3)  $P_{i/j}: i \neq j, v = v_{O}, \theta = \theta_{t}$   
 $\overline{k} = 2v_{O}^{*}C_{i/j}(k;\theta/\theta) - v_{O}^{*}C_{i/i}(k;\theta/\theta)v_{O}$   
(4)  $P_{\theta/\theta_{t}}: i = j, v = v_{O},$   
 $\theta < \theta_{t} < k \text{ or }$   
 $\theta_{t} < \theta < k$   
 $\overline{k} = 2v_{O}^{*}C_{i/i}(k;\theta/\theta_{t})v - v_{O}^{*}C_{i/i}(k;\theta/\theta)v_{O}$ 

Another probability of cross detection  $P_{i/i}(v)$  may be defined for the simplified GLR.

$$P_{i/i}(v): i = j, \theta = \theta_t, v \neq v_o$$
$$\overline{k} = v_0^* C_{i/i}(k; \theta/\theta) [2v - v_o]$$

Simplified GLR is polarized to detect a special failure direction.  $P_{i/i}(v)$  provides a measure of the ability of simplified GLR to detect other <u>failure directions</u> than the hypothesized one  $(v_0)$ . This quantity can also be used as a measure of the distinguishability of different failure directions for a simplified GLR detector. Given the basic similarity of the GLR and SGLR algorithms, these calculations should shed light on the properties of full GLR.

The desired probabilities are easily obtained by integrating gaussian distributions.

-1.3-

# II.3 The $\chi^2$ random variable

A. The central  $\chi^2$  random variable u with n degrees of freedom is the sum of squares of n independent, zero mean, unit variance gaussian random variables or more precisely,

$$u \qquad \sum_{i=1}^{n} x_{i}^{2}$$

when  $x_i \sim N(0, 1)$ and  $E\{x_i x_j\} = 0, i \neq j.$ 

Then the density function of u is:

$$f_{u}^{n}(u) = \begin{cases} \frac{1}{2^{n/2} \Gamma(\frac{1}{2}n)} e^{-u/2} u^{\frac{1}{2}-1} & u > 0 \\ 0 & u \leq 0 \end{cases}$$

where  $\Gamma(\cdot)$  is the gamma function.

and the strategies of the second s

There is a FORTRAN subroutine (CDTR) in the IBM Scientific Subroutine Package that can be readily used to compute the integral of the above density, i.e. the quantity

$$P_{u}^{n}(u \leq \varepsilon) = \int_{-\infty}^{\varepsilon} f_{u}^{n}(u) du = \int_{0}^{\varepsilon} f_{u}^{n}(u) du$$

Then the false alarm probability of a detector set to detect a failure in an n-dimensional system is

$$P_{\overline{F}} = 1 - P_{u}^{n} (u \leq \varepsilon).$$

B. The noncentral  $\chi^2$  random variable  $\omega$  with n degrees of freedom is the sum of squares of n independent, nonzero mean, unit variance gaussian random variables with the noncentrality parameter defined as

$$\begin{split} \delta^{2} &= \sum_{i=1}^{n} \left[ E(x_{i}) \right]^{2} \\ \text{With } \delta^{2} &= 0, \ \omega \ is \ a \ central \ \chi^{2}. \ \text{ The density for } \omega \ is \\ r_{\omega,\delta^{2}}^{n}(\omega) &= \left\{ \frac{1}{\sqrt{\pi}} \frac{1}{2^{n/2}} e^{-\frac{1}{2}(\delta^{2}+\omega)} \frac{n^{-2}}{2} \sum_{j=0}^{\infty} \frac{(\delta^{2}\omega)^{j}}{(2j)! \Gamma(j+\frac{1}{2})} \right. \quad \omega > 0 \\ \omega &\leq 0 \\ \text{Recall} \\ \Gamma(\frac{1}{2}) &= \sqrt{\pi} \\ \text{Then} \\ r_{\omega,\delta^{2}}^{n}(\omega) &= e^{-\frac{1}{2}\delta^{2}} \sum_{j=0}^{\infty} (\delta^{2})^{j} \frac{n^{-2}}{\omega^{2}+j} e^{-\frac{1}{2}\omega} \frac{\Gamma(j+\frac{1}{2})}{2^{n/2} \Gamma(\frac{1}{2})(2j)! \Gamma(\frac{1}{2}+n+j)} \ \omega > 0 \\ &= e^{-\frac{1}{2}\delta^{2}} \sum_{j=0}^{\infty} (\delta^{2})^{j} \frac{n^{2}+j-1}{\omega^{2}+j} e^{-\frac{1}{2}\omega} \frac{(j-1+\frac{1}{2})(j-2+\frac{1}{2})\dots (\frac{1}{2}\Gamma(\frac{1}{2}))}{2^{n/2}(2j)! \Gamma(\frac{1}{2}+1)} \ u > 0 \\ &= e^{-\frac{1}{2}\delta^{2}} \sum_{j=0}^{\infty} (\delta^{2})^{j} \frac{n^{2}+j-1}{\omega^{2}+j} e^{-\frac{1}{2}\omega} \frac{2^{-j}(2j-1)(2j-3)\dots(3)(1)\Gamma(\frac{1}{2})}{2^{n/2}(2j)! \Gamma(\frac{1}{2}+\frac{1}{2}+n)} \\ &= e^{-\frac{1}{2}\delta^{2}} \sum_{j=0}^{\infty} (\delta^{2})^{j} \frac{1}{j! 2^{n/2} + \frac{1}{2^{j}}} \frac{1}{\Gamma(j+\frac{1}{2}-n)} \ \omega \frac{n^{2}+j-1}{2} e^{-\frac{1}{2}\omega} \\ &= e^{-\frac{1}{2}\delta^{2}} \sum_{j=0}^{\infty} (\delta^{2})^{j} \frac{1}{j! 2^{n/2} + \frac{1}{2^{j}}} \frac{1}{\Gamma(j+\frac{1}{2}-n)} \ \omega \frac{n^{2}+j-1}{2} e^{-\frac{1}{2}\omega} \\ &= e^{-\frac{1}{2}\delta^{2}} \sum_{j=0}^{\infty} \frac{(\delta^{2})^{j}}{2^{j}! 1} \frac{r^{n+2j}}{r^{u}} (\omega) \\ \text{hence,} \\ &= e^{-\frac{1}{2}\delta^{2}} \sum_{j=0}^{\infty} \frac{(\delta^{2}/2)^{j}}{2} \sum_{j=0}^{\infty} \frac{(\delta^{2}/2)^{j}}{2! 1} r^{n+2j}} (u \leq c) \end{split}$$

and the standard for the second second state of the second state of the second se

E

Pr 10 . . . . . . . . . .

 $p_u^{n+2j}$  ( $u \leq \epsilon$ ) may be computed using the IBM subroutine CDTR. Then  $P^n_{\omega,\delta^2}(\omega \le \varepsilon)$  is calculated by performing the summation. The infinite  $\omega,\delta^2$  sequence in the expression of  $p^n_{\omega,\delta^2}(\omega \le \varepsilon)$  can be proved to be convergent. For wide ranges of  $\delta^2$  and  $\varepsilon$ , the limit of the series is effectively attained by summing less than thirty terms. We also note +1 at

$$\lim_{\varepsilon \to \infty} p^{n} \quad (\omega \le \varepsilon) = 1 \quad \text{for all } \delta^{2} \ge 0$$

$$\lim_{\varepsilon \to \infty} p^{n} \quad (\omega \le \varepsilon) = 0. \quad 0 \le \varepsilon < \infty$$

$$\delta^{2} \to \infty \quad \omega, \delta^{2}$$

Hence,  $P_D$ ,  $P_{i/j}$  and  $P_{\theta/\theta_t}$  are increasing functions of  $\delta^2$  and approach 1 as  $\delta^2$  goes to  $\infty$  for any finite value of  $\varepsilon$ , the threshold (sc. Figure 2.1).

II.4 A study of the probability of correct detection (PD)

Recall for full GLR,

 $P_{p} = Prob(\ell(k; \theta) > \varepsilon | \alpha = \beta = i, \ \theta = \theta_{t})$ 

Under this condition,  $\ell(k; \theta)$  is a noncentral  $\chi^2$  random variable with noncentrality parameter  $\delta^2$ .

$$S^{2} = v^{*} C_{i/i} (k; \theta/\theta) v$$

By the definition

 $C_{i/i}(k; \theta/\theta) \stackrel{\Delta}{=} C(k; \theta)$  of the type i detector

Then

$$\delta^2 = v^* \cos(\theta) v$$

For simplified GLR,

$$P_{\alpha} = Prob \left( \ell(k; \theta) > \epsilon \mid \alpha = \beta = i, \theta = \theta_{+}, v = v_{0} \right)$$

 $\ell(\mathbf{k}; \theta)$  is then a gaussian random variable with mean  $(\overline{\ell})$  and variance  $(\sigma^2)$ .

-16-



$$\overline{l} = v^{*} C(k; 0) v$$
$$\sigma^{2} = 4 \overline{l}$$

: 1

In both cases, the  $P_D$ 's are increasing functions of  $\delta^2$  and  $\overline{k}$  which evolve with time (k). An understanding of the evolution of the  $P_D$ 's requires the evolution of  $\delta^2$  and  $\overline{k}$  which in trun require the behavior of  $C(k; \theta)$  as a function of time.

In the fullowing, we present an analysis of the behavior of  $C(k; \theta)$  for time invariant systems.

In a time invariant system and ste dy-state Kalman filter,  $C(k; \theta)$ becomes dependent c. the difference between the true failing time and observation time  $(k-\theta)$ . For convenience, we let  $r = k - \theta$ . The four different types of detector are considered separately.

1. State Jump Detector

$$F(r) = \sum_{j=0}^{r} \Theta^{r-j} KH \Phi^{j}$$

where  $\Theta = [I-KH]\Phi$ ; K is the steady state Kalman gain,  $\Phi$  is the system matrix and H is the observation matrix. Both the system and the filter are assumed to be stable. Then the magnitude of the eigenvalues of  $\Phi$ and  $\Theta$  is strictly less than 1, i.e.

$$|\lambda_{i}(\Phi)| < 1$$
  $i = 1, 2, ... n$   
 $|\lambda_{i}(\Theta)| < 1$   $i = 1, 2, ... n$ 

where n is the dimension of  $\Phi$  and  $\Theta$ . Consider the norm  $||\cdot||$  of a nxm matrix A,

$$||A|| = \max_{||X||=1} (x'A'Ax)^{1/2}$$

-18-

where x is a m-vector.

For a square matrix  $\Lambda$  with all eigenvalues of magnitudes less than 1, it can be shown that ||A|| < 1.

For a jump in the state,

$$F(r) = \sum_{j=0}^{r} \Theta^{r-j} KH\Phi^{j}$$

$$||F(r)|| \leq \sum_{j=0}^{r} ||\Theta^{r-j}KH\Phi^{j}|| \leq \sum_{j=0}^{r} ||KH|| \rho^{r} = ||KH|| (r+1) \rho^{r}$$

where  $\rho = \max \{ ||\phi||, ||o|| \}$ 

Since  $\rho < 1$ , there exist a  $\alpha > 0$  such that  $\rho = e^{-\alpha}$ . Then

 $||F(r)|| \leq ||KH|| (r+1) e^{-\alpha r}$ 

The RHS goes to zero as  $r \rightarrow \infty$ . Therefore

$$\lim_{r \to \infty} F(r) = 0$$

Similarly, for G(r),

i. F

- 12:--11.

$$||G(r)|| = ||H[\Phi^{r} - \Phi F(r-1)]||$$
  

$$\leq ||H||[||\Phi||^{r} + ||\Phi|| ||F(r-1)||]$$
  

$$\leq ||H|| [\rho^{r} + ||KH|| r \rho^{r}]$$

Hence G(r) also approaches zero as  $r \rightarrow \infty$ . Now consider C(r). Define

, r < s

$$\Delta C(\mathbf{r},\mathbf{s}) \stackrel{\Delta}{=} C(\mathbf{r}) - C(\mathbf{s})$$
$$= \sum_{j=r+1}^{s} G'(j) v^{-1}G(j)$$

# $||\Delta C(\mathbf{r}, \mathbf{s})|| \leq \sum_{j=r+1}^{s} ||v^{-1}|| ||H||^{2} (\rho^{j} + ||KH|| j\rho^{j})$ $\leq ||v^{-1}|| ||H||^{2} ((s-r)\rho^{r} + ||KH|| (s-r) + \rho^{r})$

- 12

As  $r \rightarrow \infty$ , the terms in the bracket approach 0. Hence

 $\lim_{r \to \infty} ||\Delta C(r,s)|| = 0 \qquad r < s$ 

This shows the {C(1), C(2), ... C(r) ...} is a Cauchy sequence and hence converges to a finite constant matrix. Noting that C has the interpretation as the information matrix associated with estimating v, we see that there is a finite amount of information concerning v in the residuals  $\gamma$  (this is clear since both the system and filter are stable and the failure is a transient effect -- i.e., a jump). By determining the rate of convergence of C(r), we can choose a waiting time r\* such that there is essentially no information in  $\gamma(k)$  concerning failures at time  $\theta$ , where  $k - \theta > r^*$ .

2. Step in the state

F

فرجع مناطل وبلائمتها والاولان

$$\begin{aligned} &(\mathbf{r}) = \sum_{i=0}^{r} \sum_{j=i}^{r} \Theta^{r-j} \kappa H \phi^{j-i} \\ &= \sum_{j=0}^{r} \Theta^{r-j} \sum_{i=0}^{j} \kappa H \phi^{i} \\ &= \sum_{j=0}^{r} \Theta^{r-j} \kappa H (\mathbf{I} - \phi^{j+1}) (\mathbf{I} - \phi)^{-1} \\ &= \sum_{k=0}^{r} \Theta^{r-j} \kappa H (\mathbf{I} - \phi)^{-1} - \sum_{j=0}^{r} \Theta^{r-j} \kappa H \phi^{j+1} (\mathbf{I} - \phi)^{-1} \\ &= (\mathbf{I} - \Theta^{r+1}) (\mathbf{I} - \Theta)^{-1} - \sum_{j=0}^{r} \Theta^{r-j} \kappa H \phi^{j+1} (\mathbf{I} - \phi)^{-1} \end{aligned}$$

-20-

As  $r \neq \infty$ , the first term becomes  $[I - 0]^{-1}KH[i - \phi]^{-1}$  and the second goes to 0 following the reasoning for the state jump care.  $[I - 0]^{-1}$  and  $[I - \phi]^{-1}$ exist because  $|\lambda_i(0)| < 1$ ,  $|\lambda_i(\phi)| < 1$  for i = 1, 2, ...n.

$$G(r) = H[\sum_{j=0}^{r} \phi^{r-j} - \phi_F(r-1)]$$
  
= H[I -  $\phi^{r+1}$ ][I -  $\phi$ ]<sup>-1</sup> - H $\phi_F(r-1)$ ]

As  $r \neq \infty$ , the first term becomes  $H[I \quad \phi]^{-1}$  and the second,  $H\phi[T-\Theta]^{-1}KH[I-\phi]^{-1}$ . Hence G(r) reaches a constant as  $r \neq \infty$ . G'(j) $v^{-1}G(j)$  is positive semidefinite and attains a steady state value G'( $\infty$ ) $v^{-1}G(\infty)$ . Thus it is possible that some of the eigenvalues of C(r) grow as r increases indicating that some failure vectors w 1 cause a growing  $\delta^2$ . Therefore, an actual failure vector of this nature will cause P<sub>D</sub> to approach 1 as the waiting time (r) increases. By examining the eigenvectors and eigenvalues of C, we can determine those step failures that can be detected with arbitrarily high probability if we are willing to wait long enough.

3. Jump in sensor

 $\lim_{r \to \infty} F(r) = \lim_{r \to \infty} \Theta^{r} K = 0$   $\lim_{r \to \infty} G(r) = \lim_{r \to \infty} -H\Phi F(r-1) = 0$ 

Hence C(r) for sensor jump failures behaves much like that of state jump failure.

4. Step in sensor

$$\lim_{\mathbf{r}\to\infty} \mathbf{F}(\mathbf{r}) = \lim_{\mathbf{r}\to\infty} \sum_{\mathbf{j}=0}^{\mathbf{r}} \mathbf{O}^{\mathbf{j}}\mathbf{K} = [\mathbf{I} - \mathbf{O}]^{-1}\mathbf{K}$$

-21-

$$\lim_{r \to \infty} G(r) = \lim_{r \to \infty} [I - H\Phi F(r-1)]$$
$$= T - H\Phi [I - \Theta]^{-1} K$$

Hence C(r) for sensor step failure behaves like that of state step failures.

In general, C(r) is a sum of positive semi-definite matrices and consequently may be positive definite or semi-definie matrix. If C(r)is positive semi-definite, then there are failure vectors such that the resulting  $\delta^2$  is zero, implying the failure direction cannot be seen by the detector and that certain failure directions are indistinguishable. Intuitively, one would suspect the cause for this is that this failure direction is not observable. This is true in fact. In the following, conditions for the positive definiteness of C(r) of different detectors are derived.

C(r) may be written as

$$C(\mathbf{r}) = \begin{bmatrix} G'(0) \\ \vdots \\ G'(1) \\ \vdots \\ \vdots \\ G(\mathbf{r}) \end{bmatrix} \begin{bmatrix} \mathbf{v} - \mathbf{l} \\ \mathbf{v} - \mathbf{l} \\ \mathbf{v} - \mathbf{l} \end{bmatrix} \begin{bmatrix} G(0) \\ \vdots \\ G(1) \\ \vdots \\ G(\mathbf{r}) \end{bmatrix}$$

$$\stackrel{\Delta}{=} G'(\mathbf{r}) \quad \mathbf{v}^{-1} \quad G(\mathbf{r})$$

···· • • • • • • • • •

Since  $v^{-1} > 0$ ,  $v^{-1} > 0$ . From the theory of linear algebra, C(r) is positive definite if the null space of G(r) is  $\{0\}$ . We examine G(r) for the four cases separately.

1. Jump in State  

$$G(\mathbf{r}) = \begin{bmatrix} \mathbf{1} & & \\ -H\phi K & \mathbf{I} & \\ -H\phi \Theta K & -H\phi K & \mathbf{I} \\ \vdots & \vdots & \ddots \\ *H\phi \Theta^{\mathbf{r}-1} K & -H\phi \Theta^{\mathbf{r}-2} K & \cdots & \mathbf{I} \end{bmatrix} \begin{bmatrix} H \\ H\phi \\ H\phi^{2} \\ H\phi^{2} \end{bmatrix}$$

 $A_1(r)$  is a lower triangular matrix with identity blocks in the diagonal.  $A_1(r)$  is of full rank, and the null space of G(r) is the null space of B(r). Hence if the null space of B(r) is  $\{0\}$ , C(r) is positive definite. This condition on T are exactly the observability condition of the system in r steps.

2. Step in State

المنازل أراميني

$$G(\mathbf{r}) = \begin{bmatrix} \mathbf{I} & & & \\ \mathbf{I} - \mathbf{H} \Phi \mathbf{K} & \mathbf{I} & & \\ \mathbf{I} - \mathbf{H} \Phi \sum_{j=0}^{1} \Theta^{j} \mathbf{K} & \mathbf{I} - \mathbf{H} \Phi \mathbf{K} & \mathbf{I} \\ \vdots & & & \\ \mathbf{I} - \mathbf{H} \Phi \sum_{j=0}^{r-1} \Theta^{j} \mathbf{K} & \mathbf{I} - \mathbf{H} \Phi \sum_{j=0}^{r-2} \Theta^{j} \mathbf{K} \cdot \cdot \cdot \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{H} \\ \mathbf{H} \Phi \\ \mathbf{H} \Phi^{2} \\ \vdots \\ \mathbf{H} \Phi^{2} \\ \vdots \\ \mathbf{H} \Phi^{r} \end{bmatrix}$$

32**5** 

 $\stackrel{\Delta}{=} \mathbf{A}_{2}(\mathbf{r}) \mathbf{B}(\mathbf{r})$ 

 $A_2(r)$  is of full rank. C(r) is positive definite if the system is observable in r steps.

3. Jump in sensor

G(0) = G'(0) = I

Hence the null space of G(r) is always  $\{0\}$ . C(r) is always positive definite in this case.

4. Step in sensor

Similar to sensor jump failures,

$$G(0) = G'(0) = I$$

C(r) is always positive definite in the sensor step case.

-23-

System observability makes a state failure detector sensitive to all directions of failure by causing a nonzero  $\delta^2$ . Sensor failures are directly observable and hence  $\delta^2$  for sensor failures is always nonzero.  $\delta^2$  attains finite steady state values for all jump failures, while for step failure, some failure directions may cause a constant, steady-state rate of increase in  $\delta^2$ . A finite steady-state  $\delta^2$  gives a limiting value of P<sub>D</sub> (< 1); an increasing  $\delta^2$  allows one to choose a P<sub>D</sub> arbitrarily close to 1 by waiting long enough.

The above analysis also provides guidelines for selecting window sizes. For detecting jump failures, the window does not have to be large since excessive waiting time (large r) does not increase  $P_D$  after a certain stage. A long window is appropriate in detecting small step failures. If the system of concern is not immediately observable, i.e. the null space of the B(r) matrix becomes {0} for some r > 0, the detection test should not be performed until the system at  $\theta$  becomes observable from k, the present time. That is, in general we will calculate  $l(k; \theta)$ over an interval of the form

# $k - M \leq \theta \leq k - N$

where N is chosen by observability considerations, while M is chosen by the limiting behavior of  $P_{D}$  and by computational considerations.

# III. The Test Problem to be Considered - The Two-Dimensional Longitudinal Dynamics of the F-8

## III,1 Introduction

Some simulation results have been obtained on the performance of the GLR (generalized likelihood ratio) detector for the first four failure types: jumps and steps in the state, and jumps and steps in the sensors. The detector equations for these failures were implemented with a simulation of a reduced-order (2nd order) F-8 aircraft model for a range of failure magnitudes and directions in state space.

The purpose in doing this was to get some experience with the GLR approach to failure detection. Having some sample performances of the detectors provides insight in a way that helps formulation of meaningful questions for further research on GLR failure detection.

Section III.2 states in general form what the GLR approach to failure detection is based on. Section III.3 describes the second-order model used in the simulations and section III.4 presents the steady state Kalman filter designed for that model. In section III.5 the relevant equations of the detector are shown and section III.6 describes what the different failures considered are and what they represent or model in a physical system.

# III.2 Generalized Likelihood Ratio Approach

Briefly, the GLR approach is as follows. There are two kinds of hypotneses:

H\_: no failure has occurred

H<sub>i</sub>: failure of type i has occurred.

If there c o m failure modes, there are m+1 hypotheses.

The filter and controller are designed based on  $H_0$ . One can then compute the effect that the various failures considered have on the filter residuals. We then have:

$$H_{0}: \underline{Y}(k) = \widetilde{\underline{Y}}(k)$$
$$H_{1}: \underline{Y}(k) = \widetilde{\underline{Y}}(k) + G_{1}(k; \theta)\underline{Y}$$

where

Using these computations we can perform hypothesis tests on the residuals

to

i) determine if a failure has occurred

ii) identify the failure type, i

iii) estimate the size of the failure.

Schematically



-26-

#### III.3 System Model

The simulations were made using a second order discretized version of the longitudinal dynamics for the F=8 aircraft at flight condition ll: altitude = 20,000 ft., Mach No. = 0.6, cumulus clouds.

The motivation for using this model lies in the need to have a model of a concrete, physical system on which to try out the detectors that would provide some common grounds for comparisons. Furthermore the model provides a compromise in complexity between realism on the one hand and the amount of computation and ease of interpretation on the other. In this early phase of research on the GLR approach to failure detection some results were needed in order to understand its structure and performance characteristics. It was felt that a system of higher order would not add significantly to our understanding.

Our model is derived from the longitudinal dynamics of the F-8 linearized about flight condition 11. That model is 7-dimensional with the following state variables:

 $\frac{d}{dt} \underline{x}(t) = \underline{A} \underline{x}(t) + \underline{B} u(t) + \underline{L} \xi(t)$ (7x1) (7x1) (7x1) (7x1) (1x1) (7x1) (1x1)

-27-

The control variable is:

 $u(t) = \delta_{e}(t) \dots (rad./sec)$ 

A, B, and L are constant matrices whose dimensions are indicated.

State variables  $x_5 = \delta_e$  and  $x_6 = \delta_e_c$  account for the dynamics of the actuators and  $x_7 = w$  is the output of a first-order linear system driven by white noise. w(t) models a wind disturbance with power spectral density given by:

$$\Psi = \frac{\sigma^2}{\pi} \frac{L}{v_o} \left\{ \frac{4}{4 + \left(\frac{L}{v_o}\omega\right)^2} \right\} \qquad [\omega \neq w = x_7]$$

For flight condition 11 we have:

L = 2,500 ft.  
V = (0.6)(1,036.93 ft/sec) = 622.150 ft/sec  
$$\sigma$$
 = 15 ft/sec (cumulus clouds)

The five sensor measurements  $\underline{z}(t)$  are given by:

$$\underline{z}(t) = \underline{C} \underline{x}(t) + \underline{\Theta}(t)$$
(5x1) (5x7) (7x1) (5x1)

$$z_1 = z_q$$
, pitch rate measurement  
 $z_2 = z_v$ , velocity error measurement  
 $z_3 = z_{\theta}$ , pitch attitude measurement  
 $z_4 = z_{\delta_e}$ , elevator angle measurement  
 $z_5 = z_{a_z}$ , normal acceleration measurement

ź

<u>C</u> is a constant (5x7) matrix and <u>O</u> is the vector of measurement noises, which are white and mutually independent. For more information on the model see [1].

Some of the steps taken in the reduction of the order of the model were:

- ignoring the input dynamics represented by  $x_5$  and  $x_6$  as they are not the main variables of interest in an aircraft dynamics model.
- eliminating  $x_7$ , the wind disturbance, as a variable and modelling its effects on the remaining ones by a white noise process.
- selecting the variables with highest signal-to-noise ratios among the observations and ignoring the rest.
- add for any other significant interactions.

The resulting model is a two-dimensional representation of the dynamics with the new state variables:

 $x_1 = q$ , the pitch rate

અને કારી જેવે સ્થિતિ છે. કે કે જે સ્થિત કે બિજરો સર્જાય સંખ્યાં તે ક્લિક્સ થયું છે. તે પણ બેલે સુંગી જાય ગુજરાજ

 $x_2 = \alpha$ , (angle of attack) - (trim value)

The last step was obtaining the corresponding discrete-time model in order to simplify implementation on the digital computer. The discretizing time step was T = 0.03125 sec  $(\frac{1}{32} \text{ sec})$ . The result,

$$\underline{\mathbf{x}}(\mathbf{k+1}) = \underline{\Phi} \ \underline{\mathbf{x}}(\mathbf{k}) + \underline{\mathbf{G}}_{\underline{\mathbf{N}}\underline{\mathbf{X}}} \ \underline{\mathbf{w}}(\mathbf{k}) \tag{1}$$
$$(2\mathbf{x}\mathbf{2}) \qquad (2\mathbf{x}\mathbf{2})$$
$$\underline{\mathbf{z}}(\mathbf{k}) = \underline{\mathbf{H}} \ \underline{\mathbf{x}}(\mathbf{k}) + \underline{\mathbf{G}}_{\underline{\mathbf{N}}\underline{\mathbf{Z}}} \ \underline{\mathbf{v}}(\mathbf{k}) \tag{2}$$

-29-

where

$$E\{\underline{\omega}(\mathbf{k}) \ \underline{\omega}(\mathbf{j})^{\mathrm{T}}\} = \underline{\mathbf{I}} \ \delta_{\mathbf{k}\mathbf{j}} , \ \delta_{\mathbf{k}\mathbf{j}} = \begin{cases} 0 & \mathbf{k} \neq \mathbf{j} \\ \mathbf{1} & \mathbf{k} = \mathbf{j} \end{cases}$$
$$E\{\underline{\mathbf{v}}(\mathbf{k}) \ \underline{\mathbf{v}}(\mathbf{j})^{\mathrm{T}}\} = \underline{\mathbf{I}} \ \delta_{\mathbf{k}\mathbf{j}} \end{cases}$$

$$\underline{\Phi} = \begin{bmatrix}
0.98258 & -0.14649 \\
0.030587 & 0.97193
\end{bmatrix}$$

The eigenvalues of  $\Phi$  are:

$$\lambda_{i}(\Phi) = .977 \pm j(0.0667) , i = 1,2$$

$$\frac{G_{NX}}{G_{NX}} = \begin{bmatrix} 0.022596 & 0.0 \\ 0.0043276 & 0.00022603 \end{bmatrix}$$

$$\frac{G_{NZ}}{G_{NZ}} = \begin{bmatrix} 0.008729834 & 0.0 \\ 0.0 & 0.06 \end{bmatrix}$$

$$\frac{H}{H} = \begin{bmatrix} 1.0 & 0.0 \\ 0.0 & 16.154 \end{bmatrix}$$

#### III.4 Filter

The filter implemented was a steady-state Kalman filter designed for the two-dimensional model under normal circumstances (hypothesis  $H_0$ ):

prediction: 
$$\hat{\underline{x}}(k|k-1) = \underline{\Phi} \hat{\underline{x}}(k-1|k-1)$$
  
update:  $\hat{\underline{x}}(k|k) = \hat{\underline{x}}(k|k-1) + \underline{K} \underline{Y}(k)$ 

with

residuals: 
$$\underline{Y}(k) = \underline{z}(k) - \underline{H} \cdot \underline{\hat{x}} \cdot (k|k-1)$$
  
steady-state Kalman gain:  $\underline{K} = \underline{P}(k|k-1) \cdot \underline{H}^{T} \underline{V}^{-1}$ 

.

where 
$$\underline{P}(k|k-1) = E\{[\underline{x}(k) - \hat{x}(k|k-1)] [\underline{x}(k) - \hat{\underline{x}}(k|k-1)]^T\}$$
  

$$\underline{V} = E\{\underline{Y}(k) \ \underline{Y}(k)^T\}$$

$$= \underline{H} \ \underline{P}(k|k-1)\underline{H}^T + G_{NZ} \ G_{NZ}^T$$

In this example, we have:

$$\underline{K} = \begin{bmatrix} 7.5351 \times 10^{-1} & 4.6257 \times 10^{-2} \\ 1.3527 \times 10^{-1} & 1.2748 \times 10^{-2} \end{bmatrix}$$

$$\underline{P}(k|k-1) = \begin{bmatrix} 5.6311 \times 10^{-4} & 1.0891 \times 10^{-4} \\ 1.0891 \times 10^{-4} & 2.2130 \times 10^{-5} \end{bmatrix}$$

$$V = \begin{bmatrix} 6.393264579 \times 10^{-4} & 1.759328799 \times 10^{-3} \\ 1.759328799 \times 10^{-3} & 9.374701305 \times 10^{-3} \end{bmatrix}$$

III.5 Detector

We now take a look at the detector and some of the computation involved in its implementation. For a more complete derivation see [2].

Consider a particular type of failure, i, and let k be the current time. For each  $\theta \in \{k=M, \ldots, k=N\}$ , corresponding to times inside a 'window' (to which we restrict the GLR to avoid a computation load which would otherwise grow indefinitely with k), we compute

$$\underline{\mathbf{d}}(\mathbf{k}; \theta) = \sum_{j=\theta}^{\mathbf{k}} \underline{\mathbf{G}_{i}}^{\mathbf{T}}(j; \theta) \underline{\mathbf{v}}^{-1}(j) \underline{\boldsymbol{\gamma}}(j)$$

which then gives the likelihood ratios

$$\ell(k; \theta) = \underline{d}^{T}(k; \theta) \underline{c_{i}}^{-1}(k; \theta) \underline{d}(k; \theta)$$
,  $\theta = k-M, k-M+1, \dots, k-N$ 

where

$$\underline{\underline{C}}_{i}(k; \theta) = \sum_{j=\theta}^{k} \underline{\underline{C}}_{i}^{T}(j; \theta) \underline{\underline{V}}^{-1}(j) \underline{\underline{C}}_{i}(j; \theta), \quad \theta = k-M, \ k-M+1, \ \dots, \ k-N$$

In our case some of these quantities are time-invariant so  $\underline{G}_{i}(k; \theta)$ ,  $\underline{V}(k)$ ,  $\underline{C}_{i}(k; \theta)$  become  $\underline{G}_{i}(k-\theta)$ ,  $\underline{V}$ ,  $\underline{C}_{i}(k-\theta)$ .  $\underline{C}_{i}(k; \theta)$  may be interpreted as the information matrix at time k for a failure of type i which occurred at time  $\theta$ .

Detection is decided by means of the decision rule:

# $failure \\ \ell(k; \hat{\theta}(k)) \stackrel{\stackrel{>}{<}}{\in} \\ no failure$

where  $\theta(k)$  is the MLE (maximum likelihood estimate) at time k of the time of failure  $\theta$ . It is taken to be the value of  $\theta \in \{k-M, \ldots, k-N\}$  for which  $\ell(k; \theta)$  is largest. The detection threshold,  $\epsilon$ , is a design parameter to be considered in evaluating system performance. More will be said on this in section V.5.

If it is decided that there is a failure, the estimate of the failure is given by

$$\hat{\underline{v}}(\mathbf{k}) = \underline{c}^{-1}(\mathbf{k}; \hat{\theta}(\mathbf{k}))\underline{d}(\mathbf{k}; \hat{\theta}(\mathbf{k}))$$

The windows used in the simulations, [k-M, k-N], had N=O for all cases, M=10 for jump failures and M=30 for step failures.

#### III.6 The Failures

The failure modes considered correspond to the four types studied so far:

-32-

1) State Jumps

$$\underline{\mathbf{x}}(\mathbf{k+1}) = \underline{\Phi} \underline{\mathbf{x}}(\mathbf{k}) + \underline{\mathbf{G}}_{\mathbf{N}\underline{\mathbf{x}}}\underline{\boldsymbol{\omega}}(\mathbf{k}) + \underline{\nabla} \delta_{\mathbf{k+1}}, \boldsymbol{\theta}$$

2) State Steps

 $\underline{\mathbf{x}}(\mathbf{k+1}) = \underline{\phi} \underline{\mathbf{x}}(\mathbf{k}) + \mathbf{G}_{\mathbf{NX}} \underline{\boldsymbol{\omega}}(\mathbf{k}) + \underline{\boldsymbol{\nabla}} \mathbf{\sigma}_{\mathbf{k+1}}, \boldsymbol{\theta}$ 

3) Sensor Jumps

$$\underline{z}(\mathbf{k}) = \underline{H} \underline{x}(\mathbf{k}) + \underline{G}_{NZ} \underline{v}(\mathbf{k}) + \underline{v} \underline{\delta}_{\mathbf{k},\theta}$$

4) Sensor Steps

 $\underline{z}(\mathbf{k}) = \underline{H} \underline{x}(\mathbf{k}) + \underline{G}_{\underline{NZ}} \underline{v}(\mathbf{k}) + \underline{v} \sigma_{\mathbf{k}}, \theta$ 

We did not include the control term in the state equations since we are not considering closed-loop systems at this point. For open-loop control nothing would change as far as the detector is concerned, since the Kalman Filter equations would incorporate the control term and its effect is cancelled.

Failures were taken in orthogonal directions in failure space,  $(v_1, 0)$  and  $(0, v_2)$ , for a range of  $v_1, v_2$  thought to be of most interest. Let us take a closer-look at the failures we are considering and the situations they might model in a physical system, in our case the F-8 aircraft at the specified flight condition.

Consider an open-loop system and observation process, e.g., the one presented in section III.3 by equations (1) and (2):

$$\underline{x}(k+1) = \underline{\Phi} \underline{x}(k) + \underline{B} \underline{u} + G_{NX} \underline{\omega}$$
(1)  
$$\underline{z}(k) = \underline{H} \underline{x}(k) + \underline{G}_{NZ} \underline{v}$$
(2)

and consider the 4 basic "failure modes" described in Section I:

i) State jump

-33-

- ii) State step
- iii) Sensor jump
- iv) Sensor step

The state of the second se

Keeping the system equations, (1) and (2), in mind, we can say a few things about (i) - (ii). Let us examine these failures in order to provide some (albeit superficial) physical motivation for the various modes. Recall that  $x_1$  is q and  $x_2$  is  $\alpha$ . Thus a state jump of the form  $(v_1, 0)^T$  or a state step of the form  $(0, v_2)^T$  might be used to model the effect of a sudden wind shear that leads to an increasing angle of attack. On the other hand, a jump of the form  $(0, v_2)^T$  could be used to model a relatively long-term upward or downward gust that initially manifests itself as a shift in  $\alpha$ . A step of the type  $(v_1, 0)^T$  could arise from an elevator failure.

In the observation equation, cases (iii) and (iv), we have a similar situation. A failure  $\underline{v} = (v_1, c)^T$  may model a bad data point in the measurement of q in the jump case, (iii), or a permanent bias for the step case, (iv), in the same signal due to a component failure in a sensor. By analogy the same may be said about a failure  $\underline{v} = (0, v_2)^T$  which then refers to the measurement of  $\alpha$ .

Table 3.1, summarizes the failure schedule implemented in the simulations. State and sensor failure magnitudes are given in terms of  $\sigma$ -levels of plant and sensor noises respectively. For jump failures nothing under 10 was looked at since such jumps would be undistinguishable from the noise. Such failure magnitudes were considered for step failures since they are detectable because their sustained presence provides more information as time passes. We will see how this is reflected in the GLR's when

-34-

we take a closer look at the  $G_i(k; \theta)$  for each type of failure.

The C's are the following:

-

and a start of the s A start of the start of the

en and a state of the state of th An and the state of t

:

$$\begin{pmatrix} v_1 \\ 0 \end{pmatrix}$$
, pitch rate;  $\sigma_q$ : Plant Noise Level = 2.2596 x 10<sup>-2</sup>  
 $\sigma_q'$ : Sensor Noise Level = 8.7298 x 10<sup>-3</sup>

 $\begin{pmatrix} 0 \\ v_2 \end{pmatrix}$ , angle of attack;  $\sigma_{\alpha}$ : Plant Noise Level = 4.3335 x 10<sup>-3</sup>  $\sigma_{\alpha}^{*}$ : Sensor Noise Level = 6.0000x10<sup>-2</sup> n cap
| DETECTOR AND<br>FAILURE TYPE | (v <sub>1</sub> 0) <sup>T</sup>                                                                                    | (0 v <sub>2</sub> ) <sup>T</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STATE<br>JUMP                | lơ, 5ơ, 10ơ, 20ơ                                                                                                   | 1σ, 5σ, 10σ, 20σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| STATE<br>STEP                | <sup>1</sup> / <sub>10</sub> σ, <sup>1</sup> / <sub>2</sub> σ, 1σ, 5σ, <sup>5</sup> σ <sup>5</sup> / <sub>10</sub> | 1/10 σ, 1/2 σ, 1σ, 5σ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SENSOR<br>JUMP               | lơ', 5ơ', 10ơ', 20ơ'                                                                                               | 10', 50', 100', 200'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SENSOR<br>STEP               | $\frac{1}{10} \sigma', \frac{1}{2} \sigma', 1\sigma', 5\sigma', 10\sigma', 20\sigma'$                              | <sup>1</sup> / <sub>10</sub> σ', <sup>1</sup> / <sub>2</sub> σ', 1σ', <sup>5</sup> σ', 10σ', 20σ' <sup>5</sup> σ', 10σ', 20σ' <sup>1</sup> / <sub>2</sub> σ' <sup>1</sup> / <sub>2</sub> σ |

Table 3.1 Set of Failures Considered

i

# IV. Application to the Second Order F-8 Model - Full GLR

The graphs in Fig. 4.1 and 4.2 represent a way of using  $P_D$  and  $P_F$  together. For a particular step failure and a threshold, the graphs provide the necessary waiting time  $(k - \theta)$  for  $P_D$  to reach the values of .95 and .99. The failure size is measured in units of standard deviation of the noise  $(1\sigma = 1 \text{ standard deviation})$ . Each threshold has a fixed value of  $P_F$  associated with it. The threshold values 5, 9, and 14 considered here have  $P_F$ 's of .1, .01 and .001 respectively. For example, consider a .1\sigma step failure in the pitch rate. To reach a  $P_D$  of .99 with  $P_F$  of .01, a waiting time of 36 steps is required. Each time step is 1/32 second. The waiting time may be taken as a measure of the speed of detection with a fixed rate of false alarms.

It is evident from the graph that the full GLR detector is very fast in detecting state step failure of sizes ranging from .10 to 50. For the sole purpose of detection (no estimation of  $\nu$ ), a small window of about 50 time steps is sufficient.

Sensor failures require much longer waiting times, as high as 6.6 hours for a .lg step in the angle of attack deviation sensor. This phenomenon may be explained by the nature of the associated G matrices (see Figures 5.2 and 5.3 in Section V). The entries in the G matrices are small in comparison with the G matrices of state step failure resulting in a small and slow growing  $\delta^2$ . Therefore, the window of a sensor step detector should be large. Its size would depend on the sizes and direction of failure of interest.

Waiting time plots are not made for jump failures due to the following observation. For jump failures,  $P_D$  either reaches the desired

-37-





, 41 Figure 4.2 Step failure in angle of attack deviation sensor:  $V^{1} = \{V_{1}, 2\}$ 

value (.95. .99, etc.) in a few steps or it never reaches it. This, however, is in agreement with the previous analysis. The effect of a jump failure decays as time progresses thus creating a  $\delta^2$  approaching a constant steady state value. For a fixed threshold, this value of  $\delta^2$  corresponds to a fixed value of P<sub>D</sub> which may be bigger or smaller than the desired P<sub>D</sub>. Therefore, jump detector windows should be small since large windows do not necessarily improve detection.

We note that all of these quantities are <u>static</u> quantities -- i.e.,  $\Gamma_{\rm b}$  and  $P_{\rm D}$  calculated here are simply the probability that  $\ell(k; \theta) > \epsilon$  for fixed k -  $\theta$ . These numbers should be interpreted as follows:

- 1) Fix  $k \theta = r_0$ . We are looking <u>only</u> for failures at the time  $\theta = k - r_0$ , and thus at any time k we need only evaluate <u>one</u> likelihood ratio,  $\ell(k; k - r_0)$ , using the window of residuals  $\gamma(k - r_0)$ ,  $\gamma(k - r_0 + 1)$ , ...,  $\gamma(k)$ .
- 2) The numbers  $P_D$  and  $P_F$  in the figures are the probabilities that

$$\ell(\mathbf{k}; \mathbf{k} - \mathbf{r}_0) > \varepsilon$$

under the failure (of size v) and no failure hypotheses, respectively.

Note however that the given window of residuals can be used to calculate other values of  $l(k; \theta)$  with

$$k = r_0 \le \theta \le k$$

TANK PRINT

One can then consider questions such as the following: suppose we wish to detect failures anywhere in the interval  $\{k - r_0, k\}$ ; suppose we define the detection rule:

-40-

Declare failure in the interval  $[k - r_0, k]$  if K of the likelihood ratio  $\ell(k; \theta)$ ,  $\theta \epsilon [k - r_0, k]$  exceed a given threshold  $\epsilon$ .

By using more of the data over an interval, such as in this detection rule, we would expect better detection performance -- i.e. by taking K > 1, we can reduce  $P_{\rm p}$ , since the effect of one bad data point is somewhat alleviated; on the other hand, by looking at more than one of the  $\ell(k; \theta)$ , we should increase the probability of detecting failures. However, the calculation of  $P_{\rm D}$ 's and  $P_{\rm F}$ 's for such decision rules, considerations of the values of M, C,  $r_{\rm O}$  and the number of  $\ell(k; \theta)$  to be evaluated in the interval are difficult since the  $\ell$ 's are correlated non-central  $\chi^2$  variables. As mentioned earlier, the situation is somewhat better in the SGLR case, and we plan to consider this in the near future.

# V. Simulation Results

# V.1. Introduction

1. A. . .

The results which the simulations present are rich in content. However, there seems to be so much information in them that full appreciation of it all will take some time and much study of the data. Consequently, a simple physical model must be used in this initial stage until we understand better the limitations in detector performance. Added degrees of freedom at this point would increase the difficulty of interpretation significantly.

-42-

In the following sections  $\neg q$  take a look at these results. As a first attempt at organizing them we will comment on the overall behavior of the detectors in section V.2. Then we narrow our perspectives to try to draw some conclusions. In section V.3 we focus on jump failures, both in the state and sensor equations and in V.4 we do the same for both kinds of step failures. Section V.5 considers the problem of false alarms and the sensitivity of detection to changes in the threshold. In section V.6 we take a look at the elements of  $G_i(k;\theta)$ , the failure signatures and some interesting differences in detection performance for failures in the pitch rate and angle of attack directions with some physical interpretation are seen in V.7.

It is hoped that the qualitative descriptions and physical interpretations of the detector behavior show why the GLR approach makes sense. All this will provide a useful evaluation of the GLR detectors as well as of our understanding of it to date. These results should suggest the next steps to be taken. All the simulations were done with the corresponding detector for each type of failure, i.e. for a failure of type i the detector implemented is based on  $G_i(k;\theta)$ . (A different problem is that of cross-detection: looking for a failure of type i with a detector based on  $G_j(k;\theta)$  with  $j\neq$ ). The decision threshold was fixed at the value  $\varepsilon$ =5 all throughout and window sizes were [M=10, N=0] for jump detectors and [M=30, N=0] for step detectors. All failures occurred at k=5 $\frac{\Delta}{2}\theta_T$ , and the simulations ratio five time units past the moment when  $\theta_T$ , the true time of failure, left the window. Recall, the window at time k is composed of {k-M, k-M+1,...,k-N-1, k-N}. Therefore the simulation stopped at k=M+ $\theta_T$ +5=M+10, or k=20 for jumps and k=40 for steps. The flowgraph in Figure 5.1 illustrates the general make-up of the simulations.



-43-

The system and filter matrices, threshold  $\varepsilon$ , failure time  $\theta_{T}$ , window size M,N and failure are specified at the beginning of a run. Then the detector matrices G(k;  $\theta$ ), C(k;  $\theta$ ) are computed. At everytime k during the simulation an observation Z(k) is produced which results in its corresponding filter residual Y(k). For every  $\theta$  in the window specified d(k;  $\theta$ ) is computed and

$$\hat{\theta} = \arg \max(k; \theta)$$

is selected. Using this estimate of the time of failure, an estimate of the failure is then computed using  $d(k;\hat{\theta}(k))$  and  $C^{-1}(k;\hat{\theta}(k))$  with the equations presented in section III.5. This procedure is repeated again for k+l until the final time is reached.

# V.2 Description of simulation results

Here we provide a brief qualitative description of the detector performance for the different failures considered. Recall the decision rule at time k,

Detection when  $\max \ell(k;\theta) \ge \varepsilon = 5.0$ ,  $\theta \in \{k-M, \dots, k-N\} \cap \{\theta \mid \theta > 0\}$ 

The set of simulations consisted of failures of the four types presented in Section III.6 for the range of values shown in Table 3.1. For each case two runs were made, each with different noise sequences for the process and measurement noises. Although two runs do not provide statistically significant results, they do allow us to avoid some unjustified generalizations

-44--

based on a single set of data. Some of the simulation outputs are presented in sections V.3, V.4 and V.5.

We begin with a description of the results for the case of state failures.

Jumps:

- 10 .... Small delay of 2-4 time steps  $(\frac{1}{16} \sec \frac{1}{8} \sec .)$  before detection of pitch rate failures,  $(v,0)^{T}$ ; detection is immediate in the angle of attack direction. The estimation of the value of  $\underline{v}$  is erratic. When  $\theta_{T}$ , the true time of failure, leaves the window, even detection itself degrades as it becomes more sensitive to the noise.
- $\geq 5\sigma$  ... Detection is immediate in all cases seen. We will see in section V.5 that this remains true even for threshold at least as high as  $\varepsilon = 14$ . Correct identification of  $\theta_T$  takes place, especially for the larger failure magnitudes, 100 and 200. The estimates  $\hat{\Sigma}$ are less erratic although the best estimate is attained in a few time steps ( $\leq 5$ ) with no further improvement. Estimates degrade rapidly as soon as  $\theta_T$  leaves the window.

#### Steps:

W. S. Shington, P. M.

1/100 ... Detection takes place, although it is somewhat erratic: it may be lost for varying lengths of time. While not very accurately or consistently, the fact that a failure has occured can be

-45-

ascertained. The simulations indicate some sensitivity of detection to the noise processes in the system: one run showed delays (3 and 13 time steps) in detection while the other one showed no delays. The larger delay is in the  $\alpha$  direction, the angle of attack. The estimated time of failure varies and the failure estimates are not close to the true failures.

 $1/2\sigma$ .. Detection is fast: largest delay was 5 time steps. Apparent sensitivity to noise in detection because for one run detection was immediate. Also, no significant difference is seen in delays to detection for failures in q and  $\alpha$ . The estimate  $\hat{\theta}$  of the failure time goes through a small transient and settles near  $\theta_{\rm T}$  (±1 or 2). The failure estimate is slightly more accurate than for  $\frac{1}{10}\sigma$  failures but it degrades rapidly as k increases.

10.... Detection is very fast: either immediate or with a delay of 1 time step for failures in both q and  $\alpha$ . The estimates  $\hat{\theta}$  are correct and show improved accuracy in  $\hat{\underline{v}}$  over 1/2 $\sigma$  failures, mainly for failures in q,  $(v, 0)^{T}$ . Best estimate  $\hat{\underline{v}}$ , reached after approximately 15-20 time steps with slow degradation thereafter.

50 ... Detection is excellent: it takes place without any delays for failures in both directions, q and v. The estimate  $\hat{\theta}$  goes to  $\theta_{\rm T}$  very quickly and the estimation accuracy in  $\hat{\underline{v}}$  increased significantly over the previous cases (1/100 to 10 steps). For

-46-

example, the estimate  $\hat{v}_i$  of the non-zero element of  $\underline{v}_i$  $(v_i = v_1 \text{ for } q \text{ and } v_i = v_2 \text{ for } \alpha)$  comes within 5-10% of the true value and  $|\hat{v}_i| >> |\hat{v}_0|$ , where  $\hat{v}_0$  is the estimate of the other

element of  $\underline{v}$  (true value is zero).

Before going on to the sensor failures let us note a few things. First of all, since one time step in this model is 1/32 sec., a delay in detection of 8 time steps, for example, represents in real time a delay of 0.25 sec. Delays must therefore be fairly long and errors in  $\hat{\theta}$  must be fairly large in order for them to be significant.

Next a comment on the accuracy of the failure estimates. It can be shown that  $C^{-1}(k;\theta)$  has the interpretation of being the covariance matrix of the error in the estimate  $\hat{\underline{v}}$ . In Figures 5.2 and 5.3 we have plotted the elements of  $C^{-1}(k;\theta)$  for the cases of state jumps and state steps for our model. Note that for jumps steady state value are reached almost immediately. This means that for this type of failure the estimate obtained initially, after a few time steps, is as good as we can expect to obtain. Alternatively, for state steps we note from Figure 5.3 that if one waits 20 time steps (5/8 sec.) our confidence in the estimate increases considerably.

This is borne out by the simulation results. Figures 5.4 and 5.5 are plots of the estimate in the phase plane for state jumps and steps of magnitude 10 and 50. Note that the estimate in the jump cases results in greater error and does not improve significantly with time. In contrast to

-47-









this we see that for steps the estimates gradually approach the true values. We now take a look at the sensor failures.

Jumps:

- 1σ' ...
- Detection is immediate and is maintained while  $\boldsymbol{\theta}_{_{\mathbf{T}}}$  remains inside the window. As soon as  $\boldsymbol{\theta}_{T}$  leaves the window, detection becomes erratic. The estimate  $\hat{\theta}$  is very sensitive to noise even while  $\theta_{\rm T}$  is in the window. Also, the estimate  $\hat{\underline{v}}$  is not very accurate although there is some improvement while  $\boldsymbol{\theta}_{_{\mathbf{T}}}$  remains in the window. Detection is quick: immediate in most cases, a delay of 5 time 50' steps showing up in one sample run for a q failure. Otherwise, no significant improvement in performance over the above lo case except for slightly more accurate estimation of  $\underline{v}$ .
- Detection is excellent: immediate in all runs except for one, >100' with a delay of one time step, in q. In estimation,  $\hat{\theta}$  is correct and the failure estimates  $\hat{\underline{v}}$  are much more accurate especially for angle of attack failures. For example, for a failure in  $\alpha$ ,  $(0, v_2)^T$ , of magnitude 200' the estimate  $\hat{\underline{v}}^{T} = (\hat{v}_{1}\hat{v}_{2})^{T}$  is such that  $\hat{v}_{2}$  is within 5% of the true value with  $|\hat{v}_2| \ge 10 |\hat{v}_1|$ . For comparison, the estimates for a failure in q,  $(v, 0)^{T}$ , are such that  $\hat{v}_{1}$  is within 25% of the true value and with  $|\hat{v}_1| = |\hat{v}_2|$ .

-52-

Detection is excellent, it is immediate for failures in both 1/100' q and  $\alpha$ . The estimate  $\hat{\theta}$  is very sensitive to noise and the failure estimate  $\hat{\nu}$  is very erratic.

Performance of detectors is similar to the above for 1/100': 1/20' detection is immediate with  $\widehat{\theta}$  responding to noise. Slight improvement in estimating  $\underline{v}_{\bullet}$ 

- Immediate detection. Some improvement over  $1/10\sigma^{\circ}$  and  $1/2\sigma^{\circ}$ 10' failures in the estimation of  $v_{\bullet}$
- Generally very good performance: immediate detection except 5**0'** for one run for a failure in q. The estimate  $\hat{\theta}$  is very close to  $\boldsymbol{\theta}_{_{\mathbf{T}}}$  and the estimates of the failures show significant improvement over the above cases.

Very good detection in general. Detection is immediate in all >100' ... cases except for a run with a delay of one time step for a failure in q. The estimate  $\hat{\theta}$  goes quickly to  $\theta_{T+1}$ . The failure estimates are relatively accurate: within 5% of true value, although they degrade gradually after  $\boldsymbol{\theta}_{_{\mathbf{T}}}$  leaves the window. Results are better for the larger failure magnitudes.

Once again let us make some remarks. Figure 5.6 is a plot of  $C^{-1}(k;\theta)$ for the case of sensor jumps. We see that our confidence in the estimate, inversely proportional to  $c^{-1}(k;\theta)$ , does not improve noticeably after the initial time step. In contrast to this, in Figure 5.7  $c^{-1}(k,\theta)$  is plotted

-53-

Steps:



a and a subscript of the subscript of th





for sensor steps and in this case as k-0 increases our certainty in the estimate does too. So again for jumps we find that the estimate does not improve significantly over the value obtained after a couple of time steps, we know that we can't do better than that in estimating  $\underline{\nu}$ . On the other hand, in the case of steps we see that a wait of 20 time stpes decreases  $C^{-1}(k;\theta)$ , the covariance of the estimation error, significantly. Figure 5.8 contains plots of the estimate of the failure produced by the GLR detectors for a 50' failure in the sensor for q, both jump and step. We see that, as mentioned above, the estimate in the jump case improves little with time while that of the step case achieves its best values after 10 time steps  $(k\geq 15)$ .

Before going on to the next section one last thing will be mentioned which provides some background for what follows and yields some insight into the dynamics of the detector. For failures of all kinds considered except for sensor jumps, when  $\theta_T$  drops out c? the window the detector selects  $\theta_T$ +1 and then  $\theta_T$ +2,  $\theta_T$ +3,... as the value of  $\hat{\theta}$ . By the definition of  $\hat{\theta}$ , those values of  $\hat{\theta}$  correspond to  $\theta$  with the largest  $\ell(k;\theta)$  in the window. We will try to understand this by means of an example.

Let us consider a simplified model of the aircraft dynamics which is valid over short periods of time. We can set the angle of attack  $\alpha$  to be the integral of the pitch rate as a first order approximation.

-57-

પ્રયુપ્ત કરે તે કે આ ગામ જ આ ગામ જ આ ગામ આ ગામ આ ગામ છે. આ ગામ આ ગામ



#### Figure 5.9

ana kana jeun a na kana ana 1 - Mana tahata tahun ang

A jump in q here looks like a step in  $\alpha$  to the filter which can only measure  $\alpha$ . This similarity tells us that in the future there might be some difficulty in cross-detection for these two types of failures.

For this system the filter can track a step input (with zero steadystate error) and thus  $G(k-\theta)$  goes to zero as  $k-\theta$  increases for a jump in q or step in  $\alpha$ , which to the filter look the same. However, for a step in q, this does not happen since it leads to a ramp at the input to the filter. For this input the filter has a steady state tracking error and thus  $G(k-\theta)$ does not go to zero for this case. Therefore if we do not detect a state jump or a sensor step or jump quickly, it will go undetected. In the case of a step in q, however, it leads to a sensor ramp as input to the filter which leads to a persistent effect on the residuals. This means that one will get more and more information about such a mode as time goes on.

We now have a sensible explanation for the incrementation of  $\hat{\theta}$  once  $\theta_{T}$ drops out of the window as is the case for state steps, for example. When  $\theta_{T}$ , the time at which such persistent and possibly increasing effects began,

-58-

is no longer a candidate for  $\hat{\theta}$  then  $\theta_T + j = k-M$  is seen by the detector as the most likely time of occurrance, where k-M is the earliest time in the window. The detector sees that some excitation persists throughout the entire window. Its best guess for its beginning is the earliest time step it can guess: the first point of the window.

# V.3 Jump Failures: State and Sensors

Let we have

For jump failures we find that detection in general is very good. The presence of a failure is identified almost immediately, with possibly some small delay in some of the failures of smaller magnitudes. When translated to real time these delays are 1/8 second or less.

Figures 5.10 and 5.11 point out a basic difference between detection of state jumps and sensor jumps. The graphs represent the values of  $l(k;\theta)$  for the  $\theta$  inside the window (those inside the window such that  $l(k;\theta) > \epsilon$  in Figure 5.11). Although they are given for different failure magnitudes, one is for a 10 $\sigma$  state jump in q while the other is for a 20 $\sigma$ ' sensor jump, they show typical  $l(k;\theta)$  profiles over a window. While sensor jumps result in distinctive spikes in the GLR's for the times of failure, state jumps lead to GLR profiles (as function of  $\theta$  for a given time k) which are smoothed out in some sense. Thus, in general, detection of state jumps is less noise-sensitive than detection of sensor jumps. The system dynamics, in effect, act like a low-pass filter.

As Figures 5.2 and 5.6 showed, for jump failures the estimate after a few time steps is already in some sort of steady state. Waiting does not

-59-

<u>RESIDUALS AT TIME 11</u> 6.05602-03 -3.9004E-01 GLRS(LG) : 0.5441E+03

, OUTPUT OPTION : 3

| TIME | GLR        | GLR BAR GRAPH                          |
|------|------------|----------------------------------------|
| 1    | 0.1843E+03 | XXXXXXXX                               |
| 2    | 0.2243E+03 | XX                                     |
| 3    | 0.3003E+03 | X X X X X X X X X X X X X X X          |
| 4    | 0.3765E+03 | XXXXXXXXXXXXXXXXXXX                    |
| 5    | 0.5441E+03 | XX X X X X X X X X X X X X X X X X X X |
| 6    | 0.3983E+03 | XXXXXXXXXXXXXXXXXXXXX                  |
| · 7  | 0.3127E+03 | X X X X X X X X X X X X X X X X X X X  |
| 8    | 0.2262E+03 | XX X X X X X X X X X X X X X X X X X X |
| 9    | 0.14342+03 | XXXXXX                                 |
| 10   | 9.7573E+02 | XXX                                    |
| 11   | 0.36548+02 | X                                      |
|      |            |                                        |

Figure 5.10 GLR's for State Jump of 100 in Pitch Rate,  $(v_1, 0)$ .

 RESIDUALS AT TIME
 11

 2.0252E-02
 9.8844E-02

 GLRS (LG)
 0.6743E+02

| TIME | GLR        | GUR BAR GRAPH                           |
|------|------------|-----------------------------------------|
| 1    | 0.8376E+01 | XXXXXX                                  |
| 5    | 0.6743E+02 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 9    | 0.6197E+01 | XXXX                                    |
| 10   | 0.7947E+01 | XXXXX                                   |

Figure 5.11 GLR's for Sensor Jump of 200' in Fitch Rate,  $(v_1, 0)$ .

-60-

provide extra information for an improved estimate. As soon as  $\theta_{T}$  leaves the window the estimates deteriorate, more gradually for state than for sensor failures.

# V.4 Step Failures: State and Sensors

For the case of step failures both in the state and sensors, detection is excellent with some delay for the smallest failures tried:  $1/2\sigma$ ,  $1/2\sigma$ ,  $1/10\sigma$  and  $1/10\sigma$ . The largest delay found was for a  $1/10\sigma$  failure in the state for angle of attack in which case it consisted of 13 time steps, or 0.4 sec. This failure represents a step in angle of attack of  $2.2603 \times 10^{-5}$ radians or approximately 0.0013 degrees.

As far as the estimation of the correct time of failure is concerned, given our fixed threshold in the simulations the critical factor is the size of the failures. In general we find that the estimate improves with time and so  $\hat{\theta}$  undergoes a kind of transient and then tends to  $\theta_{\rm T}$ . The reason for this is that the GLR's for the step cases grow in time, at least while  $\theta_{\rm T}$  remains in the window. For very small failures, 1/100 and 1/20,  $\hat{\theta}$  is very sensitive to noise, which is less important for the larger failures. For state steps greater than 1/20, sensitivity to noise is greatly reduced while for sensor steps a similar reduction takes place only for failures greater than 10. This is not surprising if we recall the discussion at the end of section V.2. We saw that state step failures are in some sense equivalent to ramps in the sensors and will therefore lead to higher GLR values than sensor steps for the same failure size.

-61--

As in the case of state jump failures; we again find the same smoothing effect. of the system dynamics on  $\ell(k;\theta)$  if viewed as a function of  $\theta$ , that is, on the GLR profile over the times in the window considered at any one instant. However, we find that step failures in the sensors also manifest this same smoothing property for big enough failures  $(10\sigma', 20\sigma')$ , i.e., with high signal-to-noise ratios. Figures 5.12 and 5.13 show the effect of sensor and state step failures in the pitch rate q, for two different times, on the GLR's. The graphs show the GLR profiles over the window for two different times and indicates their characteristic shapes.

# V.5 Threshold, False Alarms and Detection

In this section we discuss some results from the simulations which have a bearing on our attempt to understand how the GLR detectors works and to develop some intuition about its behavior. The discussion so far has emphasized the various failures tried and the range of response of the detectors given by the delay times of detection and the estimates of the failure and the time of failure. We have hinted at the sensitivity of detector performance to the noise in the system, which mainly concerns us for the problem of detecting small failures. This is very close to the problem of false alarms, that is, the possibility of detecting 'something' when in fact no failure has occured.

Detection has been defined in terms of the decision threshold explicitly by the rule:

-62-

RESTRUMES AT TIME 13 2.83968-02 -4.22158-02 GLRS (LG) : 0.1310E+02 -63-ESTINATED FAILURE VECTOR # -7.71928-03 -1.60298-01 TIME GLR GIR BAR GRAPH 1 **G.81C1E+01** 0.70112+31 3 4 C. 9552 E+0 1 5 6 7 8 0.1216E+02 0.1310E+02 9 10 12 RESIDUALS AT TIMP 32 -6.0152E-03 -6.6491E-J2 GLRS(LG) : 0.2956E+02 ESTIMATED FAILURE VECTOR = 7.9026E-03 -8.3964E-02 TIME GLR GLR BAR GRAPH 2 0.2214E+02 3 0.23953+02 4 0.2470E+02 5 .0.2237E+C2 6 0.2639E+C2 7 0.25092+22 8 0.2949E+02 9 0.2966E+J2 10 0.2437E+J2 11 0.2182E+02 \*\*\*\*\*\*\*\*\*\*\* 12 0.2308E+02 13 0.2120E+32 14 0.1759 F+02 \*\*\*\*\* 15 0.1618E+32 16 0.1746E+02 17 0.1432E+22 \*\*\*\*\* 0.1538E+C2 18 \*\*\*\*\* 19 0.13592+32 \*\*\*\*\* 20 0.1466E+02 \*\*\*\*\* ORIGINAL PAGE IS 21 0.1224E+02 \*\*\*\*\* OF POOR QUALITY 22 0.1099E+02 XXXXXXXXXXXXXXXXXXXXX 23 C.9238E+01 XXXXXXXXXXXXXXXXXXX - 24 0.8950E+01 XXXXXXXXXXXXXXXXXXX 25 0.6575E+31 XXXXXXXXXXX 26 0.8142E+01 XXXXXXXXXXXXXX 27 0.1365E+02 \*\*\*\*\*\*\*\*\*\* 28 0.1243E+32 XXXXXXXXXXXXXXXXXXXXXX 29 0.97538+01 XXXXXXXXXXXXXXXXXX 0.9073E+01 30 \*\*\*\*\* 31 0.10212+02 \*\*\*\*\*\*

Figure 5.12 GLR's for Sensor Step of  $10^{0^{\circ}}$  in Pitch Rate,  $(v_1, 0)$ ,

at k=13,32.

ાં તે જ દ્વારા કે દ્વે અને શુધા સ્વયંદ

| •• ••                        | 2          |                     |              |             | Na             | ، بہ او<br>•           |                | 0             | 1<br>5 0   | ן<br>אר            | -0                | 1                     |            |            |            |                |                |                           |              |            |              |                  |                |               |            |                |                       |                 |                       |                |                |                |                |                |                 |              |            |
|------------------------------|------------|---------------------|--------------|-------------|----------------|------------------------|----------------|---------------|------------|--------------------|-------------------|-----------------------|------------|------------|------------|----------------|----------------|---------------------------|--------------|------------|--------------|------------------|----------------|---------------|------------|----------------|-----------------------|-----------------|-----------------------|----------------|----------------|----------------|----------------|----------------|-----------------|--------------|------------|
| GIF                          | S ()       | эс<br>1.G)          | ن نو ا<br>1  | - <b>·</b>  | 0.             | . 2                    | - e<br>27      | - 9<br>2E     | +)         | 3                  | -0                | 1                     |            |            |            |                | -              | -64                       | _            |            |              |                  |                |               |            |                |                       |                 |                       |                |                |                |                |                |                 |              |            |
|                              |            |                     |              |             |                |                        |                |               |            | · · -              |                   |                       |            |            |            |                |                |                           |              |            | -            |                  |                |               | e          |                | ~                     |                 |                       |                |                |                |                |                |                 |              |            |
| - <b>F F F F F F F F F F</b> | τ M        | ንነሳ<br>አጥፍ          | ) ቀቀ<br>በር   | ተብ<br>ምር    | <br>           | с <i>ж</i><br>Г. В.    | 10 17<br>10 17 | ::: Ą.<br>. U | ж (<br>ж ( | 11<br>17           | В<br>ГЦ           | 132<br>5              | С;         | СÇ         | 01         | j.             | )              | 14                        | -Tr          | 13         | ŀ            | =                |                |               | 5          | <b>*</b>       | 0()                   | <b>(</b> =]     | 3)                    |                |                |                |                |                |                 |              |            |
|                              | 1.         | 170                 | ) <u>5</u> 3 | - (         | 2              |                        | - 2            | . 5           | 93         | 9 F                | - (               | 3                     |            |            |            |                |                |                           |              |            |              |                  |                |               |            |                |                       |                 |                       |                |                |                |                |                |                 |              |            |
| П).                          | M E        |                     |              | G           | L              | 2                      |                |               |            | •                  |                   |                       | G          | L R        | E          | 371            | 3              | 38                        | ١Ë           | H          |              |                  |                |               |            |                |                       |                 |                       |                |                |                |                |                |                 |              |            |
|                              | 1          |                     | ç.           | 19          | 61             | 4 22-                  | + 3            | 3             |            |                    | XX                | XX                    | ΧX         | XX         | XX         | X X            | KX:            | X X                       | X Y          | K X        | 13           | >>               | K X I          | XX            | y y        | XX             | <b>X</b> (            | (7)             | ( X )                 | K X S          | XXX            | ХX             | ХX             |                |                 |              |            |
|                              | 2          |                     | <b>U</b> .   | 20          | 16)<br>172     | / E·<br>7 5            | F)<br>44       | 3             |            |                    | XX                | XX                    | XX         | XX         | XX         | ( X )          | X X (          | XX                        | XX           | XX         | XX           | X)               | ХХ<br>/ V /    | X X<br>       | XX         | ( X X          | (X)                   | (               | (X.)                  | (X)            | XX)            | <u>X X</u>     | Χ7             | 1 X<br>7 7     | • • •           |              |            |
|                              | - 4        |                     | 5.           | 22          | 3-             | った<br>7日・              | 40<br>60       | .,<br>3       |            | •                  | XX                | х х х<br>Ү <b>ү ү</b> | 4 X<br>4 X | XX         | х х<br>Х У | ад.<br>СХ 1    | с х )<br>С Х ) | X                         | XX<br>XX     | л 5<br>У 9 | 33<br>37     | <br>             | ( A )<br>( X ) | 4 J<br>Y Y    | XX         | . 4 4<br>: X 5 | 5 A. Y<br>1 X 7       | <br>            | 5 X J<br>7 X J        | 5 X 2<br>5 X 3 | 7 X J<br>Y X Y | X X.<br>X Y    | X X<br>V 7     | 5.5.7<br>5.7.5 | С 22.<br>Г Х 11 | r v          |            |
|                              | 5          |                     | 0.           | 22          | 27 :           | 2 E                    | ۴Č             | 3             |            |                    | XX                | XX                    | XX         | XX         | XX         | ( X )          | XX:            | XX                        | XX           | XX         | XX           | XX               | (X)            | XX            | XX         | XY             | K X                   | ( , , )         | (.()                  | (X)            | XXX            | K K            | X X            | XXV            | Y Y             | άXΧ.         |            |
|                              | 6          |                     | C.           | 22          | 23             | 1 E                    | ŧĝ             | 3             |            |                    | XX                | XX                    | XX         | XX         | XX         | X              | (X)            | <b>X</b> Y ]              | XX           | XX         | XX           | XX               | (X)            | XX            | XX         | XX             | XX                    | < <b>&lt; x</b> | (R)                   | KX X           | X              | XX             | XX             | ухч            | (¥ )            | (X           |            |
| • •                          | 7          |                     | <u>.</u>     | 21          | 11             | 9 E.                   | +0             | 3             |            |                    | ХX                | XX                    | XX         | XX         | <u>χ</u> γ | XX             | XX.            | XX                        | XX           | XX         | <u>, 7 X</u> | <b>)</b> ) )     | Ϋ́́            | XX            | ХX         | (X)            | (X)                   | (XX             | ( X )                 | (X)            | <u> </u>       | XX.            | XX             | XX.            | [               | ·            |            |
|                              | ្លុំ       |                     | 0.           | 16          | 50°            | ) e<br>7f              | +()<br>+()     | 3             |            |                    | х 7<br>Х У        | <br>                  | лл<br>7 Х  | XX<br>XX   | XX<br>YN   | ( X )<br>( Y ) | ξΛ.<br>ΚΥ΄     | СХ.<br>Х 7                | XX<br>XY     | 2 2<br>¥ ¥ | ( (<br>  Y N | . X. *<br>: N. Y | 5 X.)<br>2 Y   | XX<br>XX      | XX<br>XX   | . (.)<br>  % ) | ( ( )<br>( <b>)</b> ( | ( X ¥<br>2 ¥ Y  | ( <u>K</u> )<br>7 X 1 | (X)<br>V V     | XXI            | ().            | ¥.             |                |                 |              |            |
|                              | 10         |                     | ΰ.           | 14          | 3              | 3 2                    | ŧŅ             | 3             |            |                    | XX                | <br>                  | XX         | XX         | x)         | <b>(</b> X )   | XX             | XX                        | XX           | XX         | XX           | χ,               | а к<br>( X )   | XX            | XX         | {}             | X                     | - <b>n</b> -    |                       |                | ~ .            |                |                |                |                 |              |            |
|                              | 11         |                     | 9.           | 11          | 31             | 9 R                    | + ?            | 3             |            |                    | ХX                | X X                   | XX         | ΥX         | XY         | CX 2           | K X '          | XX                        | X X          | ΥX         | ХХ           | X 3              | X X            | XΧ            |            |                |                       |                 |                       |                | •              |                |                |                |                 |              |            |
|                              | 12         |                     | 2.           | 31          | 17             | 38                     | + )            | 2             |            |                    | XX                | : X X                 | XX         | XX         | XY         | <b>( X</b> )   | XX             | XΥ                        | XX           | X          |              |                  |                |               |            |                |                       |                 |                       |                |                |                |                |                |                 |              |            |
|                              | 13         |                     | • ۲          | 33          |                | Э E                    | +9             | 2             |            | • •                | XX                | X X                   | X>         | X          |            |                |                |                           |              |            |              |                  |                |               |            |                |                       |                 |                       | •              | • •            |                |                |                |                 |              |            |
|                              | 51:<br>5.  | 10 E                | 1,5          | ي<br>1      |                | ; <u>1</u> .           | 1.2            | <u>ר</u><br>ז | 35         | 32                 | 7-                | 21                    | <b>-</b> · |            | <b>_</b>   |                | •••            | •                         |              |            |              |                  |                |               | ••         |                |                       |                 |                       |                |                |                |                |                |                 | •            |            |
| GI                           | FS         | (LS                 | )            | :           | (              | ) <b>.</b> '           | 17.            | 34            | 3.)<br>2+  | 34                 | -                 | V 1-                  |            |            |            |                |                |                           |              |            |              |                  |                |               |            |                |                       |                 |                       |                |                |                |                |                |                 |              |            |
|                              |            | • • •               |              |             |                |                        |                | •             |            |                    |                   |                       |            |            |            |                |                |                           |              |            |              |                  |                |               |            |                | ~                     |                 |                       |                |                |                |                |                |                 |              |            |
| म म<br>इ.स.                  | ***<br>*** | 999<br>1997<br>1997 | 44<br>77     | ين<br>نو وي | • # 4<br>• 8 * | <i>р 49 3</i><br>Г т 1 | 1 X<br>1 D     | • ¥.          | **         | EA<br>CT           | IL                | UR -                  | Ξ          | JC.        | ຼິຍ        | 121            | E D            | A.                        | ר י          | r I        | ME           | 4                | :              |               | l;         | =              | θ(                    | k=3             | 32)                   |                |                |                |                |                |                 |              |            |
| 6.0                          | 0.         | 5.7                 | 24           | 2-<br>-     | 5              | 3<br>2<br>2            | л п.<br>-      | ר<br>ר        | 9 C        | 10                 | ۲.<br>۲.          | ~ ~ ~                 |            |            |            |                |                |                           |              |            |              |                  |                |               |            |                |                       |                 |                       |                |                |                |                |                |                 |              |            |
| ч                            | TMT        |                     |              |             | GT             | P                      |                |               |            |                    |                   |                       | (          | 21.        | 12         | RA             | 12             | 01                        | 5 A 1        | 54         |              |                  |                |               |            |                |                       |                 |                       |                |                |                |                |                |                 |              |            |
| ··• •*                       | 2          |                     | Ö            | . 1         | 71             | 143                    | ;<br>;+;       | 64            | <b></b>    | •••                | X                 | Σx                    | XX         | XX         | XX         | XX             | XX             | $(\overline{\mathbf{x}})$ | (X)          | XX         | хx           | хx               | X 3            | (*)           | хx         | х'х            | хř                    | хx              | XX                    | XX             | XX             | xx             | $(\mathbf{x})$ | x x            | χγ              | ΥY           |            |
|                              | 3          | 3                   | C            | .1          | 72             | 291                    | E 🕂            | <b>)</b> 4    |            |                    | X                 | XX                    | XX         | XX         | XX         | X X            | XX             | $(\mathbf{x})$            | (X)          | (X)        | XX           | XX               | XY             | XX            | XX         | XX             | XX                    | XX              | XX                    | XX             | XX             | X              | ( X )          | / X X          | XX              | XX           |            |
|                              | 4          | •                   | 0            | . 1         | 73             | 34:                    | 2+:            | 34            |            |                    | X                 | XX                    | XX         | XX         | XX         | χ)             | (X)            | ( X )                     | (X)          | XX         | XX           | ))               | X)             | ( X )         | XX         | XX             | XX                    | XX              | XX                    | XX             | XX             | X              | XX             | XX             | ХX              | XXX          |            |
|                              |            | )<br>               | 0<br>5       | -1          | 71             | 1 9 1<br>1 9 1         | 5 + 3<br>7 + 3 | 74<br>71      |            |                    | Х<br><del>У</del> | XX                    | XX<br>XY   | X X<br>V V | XX<br>YY   | XX<br>XX       | ( X )<br>7 7 7 | ( X )<br>7 7 1            | XΧ.<br>ŽΫ    | XX<br>VV   | XX.<br>VŸ    | XX               | (X)<br>(2)     | (X)<br>773    | XX.<br>VV  | XX             | XX                    | XX              | XX<br>VV              | XX             | XX             | - X.)<br>7 7 1 |                | XX<br>VVV      | XX              | <u> </u>     | · ·-• •    |
|                              | 7          | ,                   | ō            | . 1         | 65             | 061                    | 5+)            | C4            |            |                    | x                 | XX                    | XX         | XX         | XX         | x)             | (X)            |                           | XX :         | XX         | XX           | XX               | (X)            | ( X )         | XX         | XX             | γγ<br>γγ              | XX              | XX                    | XX             | X X            | ( X )          | (              | 5 X X<br>( X X | л қ<br>У X      | . A. A<br>17 |            |
|                              | 8          | 3                   | Ċ            | .1          | 66             | 55                     | E 🔶            | 04            |            | ••••               | X                 | XX                    | XX         | XX         | XX         | Хy             | XX             | (X)                       | (X)          | XX         | XX           | XX               | XX             | (X)           | XX         | ₹X             | XX                    | XX              | XX                    | ХX             | XX             | X              | (X)            | (XZ            | XX              |              |            |
|                              | 9          | )                   | 0            | . 1         | 67             | 271                    | 2+1            | 64            |            |                    | X                 | XX                    | XX         | XX         | XX         | X              | (X)            | (X)                       | XX           | XX         | XX           | XX               | <b>X</b> )     | XX            | XX         | XX             | XX                    | XX              | XX                    | XX             | XX             | X              | K X J          | (X X           | X.              | ••••         |            |
|                              | 1.         | )<br>1              | C<br>C       | • 1         | 50             | 551<br>101             | 5+4<br>6 •     | 04<br>01      |            |                    | X                 | XX                    | XX         | ХХ<br>v v  | XX         | X)<br>V        | (X)            | (X)                       | XX)          | XX         | X X<br>-7 V  | XX               | (X)            |               | XX         | ΧX             | XX                    | XX              | XX                    | XX             | XX             | (X)            | ( X )          | ( X X          |                 |              |            |
|                              | 12         | 2                   | -0           | - 1         | 41             | 38                     | <u> </u>       | 04            | -          |                    | <u></u><br>X      | XX                    | XX         | XX         | XX         | X )            |                | ( A I                     | XX           | ι.<br>X X  | XX           | XX<br>XX         | XX             | X X A         | X X<br>X X | XX<br>XX       | <u>А</u> А<br>У Х     | XX              | ΧΧ.<br>ΫΫ             | X              | XX<br>YY       | Ϋ́Υ            | X X A          | <u></u>        |                 |              | <b>.</b> . |
|                              | 13         | 3                   | Ō            | . 1         | 4              | 311                    | -<br>: +1      | 04            |            |                    | X                 | XX                    | XX         | XX         | XX         | X              | (X)            | ( \                       | XX           | X·X        | XX           | XX               | X 3            | <b>X X</b>    | XX         | XX             | XX                    | XX              | XX                    | X              | XX             | X              | ( )<br>(       |                |                 |              |            |
| •••                          | 11         | ļ                   | Ö            | .1          | 31             | 751                    | ē +            | Ċ4            | •. • ••    | • ••               | X                 | XX                    | XX         | XX         | XX         | X              | XX             | (X)                       | (X)          | УX         | XX           | XX               | X)             | XX            | ХX         | XX             | ХX                    | XX              | XX                    | XX             | ίx x           | (              |                |                |                 |              |            |
| · •••                        | 1          |                     | 0            | . 1         | 3              | 131                    | 2+<br>         | 04            | <b></b>    | <b></b> .          | <u> </u>          | XX                    | XX<br>XX   | XX         | XX         | XX             | (X)            | (X)                       | XX           | XX         | XX           | 22               | X              | XX            | XX         | XX             | XX                    | XX              | XX                    | XX             | ζ              | •              |                |                |                 |              |            |
|                              | 17         | )<br> <br>          | - ŭ          | . 1         | 19             | 201<br>241             | ι              | С4<br>ЛЦ      |            |                    | X<br>Y            | XX                    | хх<br>хγ   | XX<br>XY   | XX<br>XY   | . X J<br>' Y J | ( X 3<br>( Y 3 | ( X )<br>( X )            | K X (<br>¥ ¥ | XX<br>YY   | X            | XX<br>YY         | ( X )<br>;     | К.Д.<br>У У ' | XX<br>YY   | XX<br>XY       | XX<br>YY              | . X X<br>: Y Y  | X X<br>Y              | X              |                |                |                |                |                 |              |            |
| * <b></b>                    | 18         | 3                   | - ō          | -1          | 1              | 6                      | 5+1            | <u>C 4</u>    |            |                    | X                 | <del>ÎX</del> X       | XX         | XX         | XX         | X)             | (X)            | <u>(x</u> )               | XX           | <u>X X</u> | ŻŚ           | XX               | X              | < X )         | XX         | <del>X</del> X | XX                    | X               | <u>^</u>              |                |                |                |                |                |                 | 3-1 ML -0104 |            |
|                              | 19         | 7                   | 0            | . 1         | 0ı             | 447                    | +              | 04            |            |                    | X                 | ХX                    | XX         | XX         | ХX         | X7             | (X)            | (X)                       | KX.          | XX         | XX           | ΧX               | $(\mathbf{X})$ | (X)           | XX         | XX             | X                     |                 |                       |                |                |                |                |                |                 |              |            |
|                              | - 2(       |                     | 0            | .9          | 7:             | 251                    | +              | 03            |            |                    | X                 | XX                    | XX         | XX         | XX         | X              | (X)            | <b>{ X }</b>              | XX           | XX         | XY           | >>               | X              | XX            | XX         | X              |                       |                 |                       |                |                |                |                |                |                 |              |            |
|                              | 21         |                     | . C          | <u>. H</u>  | 195            | 201<br>1 in i          | €+:<br>=+:     | 03            | • ·        | - <b>-</b> - · · · | X                 | XX                    | XX<br>VV   | XX         | XX         | (X)            | (X)            | (X)                       | XX           | ΧX         | XX           | XX               | (X)            | (X            |            |                |                       |                 |                       |                |                |                |                |                |                 |              |            |
|                              | 23         | 3                   | ŏ            | .7          | 32             | 271                    | :⊤<br>!*       | ))<br>))      |            |                    | X<br>X            | XX                    | XX         | X X        | XX         | <br>( X )      | ( X )<br>( X ) | К Х.<br>С Х.              | λλ<br>VV     | X X<br>X X | XX           | X                |                |               |            | C              | ) <sub>R1</sub>       |                 | -                     |                |                |                |                |                |                 |              |            |
| • • •                        | 24         | •                   | Č            | • 6         | 5              | 74                     | Ë+             | <u>¢3</u>     |            | • • • • •          | X                 | XX                    | XX         | XX         | хx         | XY             | (¥)            | (X                        | ۲X)          | Ϋ́         |              |                  |                |               |            | "O             | R I                   | GTU<br>Do       | VA                    | [ ]            | Þ <sub>A</sub> |                | •              | • • •          |                 | -            |            |
| •                            | .2         | Ś                   | C            | • 5         | 78             | 801                    | Ë +            | 03            |            |                    | Ŭ,                | XX                    | ХX         | <u>X X</u> | ХX         | (X)            | (X)            | (X)                       | XX           |            |              |                  |                |               |            |                | - 4                   | č V             | R                     | QI             | ] <u>A</u> .   |                | K              | 1              |                 |              |            |
|                              | 26         | 2                   | 0            | • 5         | 0              | 35i                    | 5+.<br>6-      | 33            |            |                    | X                 | XX                    | XX         | XX         | XX         | X 3            | (X)            | K X                       |              |            |              |                  |                |               |            |                |                       |                 |                       |                |                |                | Y              |                |                 |              |            |
|                              | 20         | /<br>}              | U<br>D       | • म<br>्र   | 121            | 3 7.<br>9 5 1          | e+<br>₹4       | 11            | -          | • •                | . Х<br>У          | XΧ<br>γγ              | XX<br>VY   | τX<br>γγ   | XX<br>YZ   | (X)<br>'Y      | X              |                           |              |            |              |                  |                |               |            |                |                       |                 |                       |                |                | •              |                |                |                 |              |            |
|                              | 29         |                     | č            | .2          | 8              | 33                     | E+             | 03            |            |                    | X                 | XX                    | XX         | XX         | X          | ~              |                |                           |              |            |              |                  |                |               |            |                |                       |                 |                       |                |                |                |                |                |                 |              |            |
| ••••                         | 30         | 5                   | Ö            | • 2         | U)             | E 4 1                  | E,+            | 03            |            |                    | X                 | XX                    | X X        | X          | مر. ه      |                | •              | • •                       | • •          | •          | -            | • •              |                |               | • •• •     |                | ••                    | • •             | •                     | • • •          |                | •              |                |                |                 |              | •          |
|                              | 31         |                     | 0            | • 1         | 2              | 751                    | C +            | 03            | •          |                    | X                 | XX                    | •          |            |            |                |                |                           |              |            |              |                  |                |               |            |                |                       |                 |                       |                |                |                |                |                |                 |              |            |
|                              | 27         | 4                   | C            | • 5         | E              | 17                     | Ë 🕈            | C 2           |            |                    | X ر               |                       |            |            |            |                |                |                           |              |            |              |                  |                |               |            |                |                       |                 |                       |                |                |                |                |                |                 |              |            |

Figure 5.13 GLR's for state step of 10 in Pitch Rate,  $(v_1, 0)$ ,  $\frac{1}{2}$ 

 Detection when  $l(k;\theta) \ge \epsilon$ , for  $k-M \le \theta \le k-N$ .

One would therefore want to take a look at the changes in detection performance and on the rate of false alarms for different thresholds.

The rate of false alarms that results from a specific implementation of the detector is an important measure of their performance. This is true because false alarm rate is one of the parameters that defines the limits of acceptability in a given application. In the context of self-reorganizing systems, which respond to failures by internally altering the control system logic to maintain given performance indices within specified bounds, a high rate of false alarm would lead to excessive and unneccesary changes. Such reasoning justifies our effort and time spent trying to analyze and then verify the false alarm probabilities for the various detectors.

In Section II the false alarm probability  $P_F$  is defined in a way that reduces to

 $\mathbf{P}_{\mathbf{F}} = \mathbf{Prob}(\ell(\mathbf{k}; \theta) > \epsilon | \mathbf{H}_{0})$ 

Some runs were made with no failures to see the rate of false alarms we would get and compare them to the computed values. Table 5.1 summarizes some aspects of the results. The precomputed false alarm probabilities are given for comparison. The simulations were run for the threshold value  $\varepsilon$ =5 and the numbers for the other values of  $\varepsilon$  were easily extracted from them. All quantities are based on the average over two sample runs. ND is the total number of times of detection, i.e., the number of times k for which some  $\ell(k; \theta)$  exceeded the value of the threshold. NDD, however, is the more

-65-

realistic measure of false alarm rates. It is the number of distinct detections: detections declared as different occurrences, i.e., with different  $\hat{\theta}$  as time of failure, for example, three detections in a row, at k, k+1, k+2, declaring a failure at a particular  $\hat{\theta}_1$  count only as one for NDD but as three for ND. The quantity NTS gives the total number of time steps that the simulations lasted, 20 for jumps and 40 for steps.

The reason for looking at NDD is related to the concept of false alarms implied by the definition of  $P_F$ . Since  $P_F$  is based on  $H_O$ , the no-failure hypothesis, and large values of the noise may be undistinguishable from jump failures, a true test for false alarms should not allow large noise spikes in the 'recent' past. A more accurate experiment to verify  $P_F$  would require us to re-initialize the detectors every time there is a false alarm.

|           |                    | State  |         | Sensor<br>Jump |         | State<br>Step |         | Sensor<br>Step |         |
|-----------|--------------------|--------|---------|----------------|---------|---------------|---------|----------------|---------|
| Threshold | Computed<br>P<br>F | ND/NTS | NDD/NTS | ND/NTS         | NDD/NTS | ND/NTS        | NDD/NTS | ND/NTS         | NDD/NTS |
| £=5       | 0.082085           | 0.575  |         | 0.700          |         | 0.475         |         | 0.7625         |         |
|           |                    |        | 0.125   |                | 0.100   |               | 0.150   |                | 0.150   |
| E=7       | 0,030197           | 0.175  |         | 0.575          |         | 0.3375        |         | 0,300          |         |
|           |                    |        | 0.100   |                | 0.075   |               | 0,0875  |                | 0.125   |
| E=10      | 0.006738           | 0.0    |         | 0.300          |         | 0.2625        |         | 0.1125         |         |
|           |                    |        | 0.0     |                | 0.050   |               | 0,025   |                | C.0625  |
| €=14      | 0.000912           | 0.0    |         | 0.175          |         | 0,1625        |         | 0.0            |         |
|           |                    |        | 0.0     |                | 0,025   |               | 0.0125  |                | 0.0     |

Table 5.1 False Alarm Rates for Different Thresholds

-66-

As expected, the measure of false alarms decreases for an increased threshold although there is a discrepancy with the precomputed  $P_F$ 's. One must keep in mind, however, the approximate nature of the counts in Table 5.1 and the limited amount of data from which they are computed. It is expected that for a much larger data base leading to more statistically significant results, the number NDD/NTS would approach the computed  $P_F$ 's.

Figure 5.14 is a plot of  $\max l(k;\theta)$ , the largest GLR at time k for  $\theta$ in the window, for the state detectors with no failures. By considering various thresholds we can see how the number of false alarms would change. Although these curves are qualitatively representative of detector performance under the condition of no failure one must keep in mind that this was for one particular run, and therefore true for a particular noise sequence. The actual values plotted would be different for another sample run.

In general, raising the threshold to a value of  $\varepsilon=7$  eliminates a significant number of false alarms. Most of them are removed when  $\varepsilon=10$ . However, the threshold is limited by the specified probability of correct detection.

In raising the threshold we make detection of small failures more difficult and we reduce the correct detection probability. Large failures (>>10 or  $10^{\circ}$ ) are not affected because the GLR's reach very high values almost immediately. As failures of smaller magnitudes are tried however, a raised threshold results in delays before detection and in the possibility of missing the failure altogether if it is very small. This is especially

-67-

and the strands the first



-68-

so for small jump failures in the Gensors, since the GLR's reach the maximum value quickly and decrease afterwards.

Thus we see that this is a very practical question of performance acceptability. It is possible that for some applications we know a priori that no small failures occur, or perhaps we are not concerned about them, then a higher threshold might be advisable. In conclusion, this is a question to be answered by the problem at hand and by the minimum standards of performance that are specified.

From the simulation data it is possible to infer the detection behavior for higher thresholds. We find the following:

### Jump Failures

For jump failures in the state of magnitude greater than or equal to  $5\sigma$ , detection is virtually unaltered when the threshold is raised from its original value,  $\varepsilon$ =5.0, except for the decrease in false alarms. In the case of 1 $\sigma$  state failures however, a number of originally correct detections are eliminated along with the false alarms. This is mostly for k- $\theta_{\rm T}$  small so in effect we introduce a delay to the time of detection by raising the threshold.

This is summarized in Table 5.2 where the delays in detection of failures are shown for state and sensor jumps of different magnitudes and for additional values of the threshold. For a given failure and threshold, the two entries are the delays after  $\theta_{\rm T}$  until the first detection for two sample runs differing only in the noise sequence followed. An entry of  $\infty$  simply means that for those values there was no detection at the end of the run, at k=20

-69-

for jump failures and k=40 for step failures. It is probable that for a longer waiting time detection would take place. Note the difference between the 1 $\sigma$  state failures and those of larger magnitudes.

Sensor failure detection shows similar offects. The difference in detection between the two kinds of failure lies in the range of failure magnitudes below which even correct detection is affected (besides false alarm rates). For sensor jumps this degradation in performance is seen even for  $5\sigma^{\circ}$  failures, although slightly less pronounced for this value. Once again this is seen in Table 5.2 where the same information is shown as for state jumps. Also note that detection of sensor jumps in  $\alpha$  is less sensitive to changes in threshold than similar failures in q. This is partly due to the fact that the measurement of  $\alpha$  has a higher signal-tonoise ratio than the measurement of q.

Furthermore, we find that for sensor jump the number of false alarms, which generally follow when  $\theta_{\rm T}$  drops out of the window, is significantly reduced for a raised threshold. Almost all such false alarms are eliminated for  $\epsilon=10$ .

Figure 5.15 shows the values of  $\max l(k;\theta) = l(k;\hat{\theta}(k))$  as it changes with k for 5\sigma state jumps and 5σ' sensor jumps. The time of failure and that for which  $\theta_{T}$  drops out of the window are indicated. Notice the drop in the value of  $l(k;\hat{\theta}(k))$  for jumps, especially in the sensors, when  $\theta_{T}$ 

-70-

|          | STATE                                                | JUMP:                                                                                                                                                                                                                                                                         | (v,0)                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               | SENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OR JUMP:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (v,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e=5      | £=7                                                  | ε=10                                                                                                                                                                                                                                                                          | ε=14                                                                                                                                                                                                                                                                                                                                          | ν                                                                                                                                                                                                                                                                                                                                                                                                                                             | ε=5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | £=7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ε=10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e=14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.4      | 3.4                                                  | 3,5                                                                                                                                                                                                                                                                           | 7,9                                                                                                                                                                                                                                                                                                                                           | 10'                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۵,۵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0      | 0.0                                                  | 0,0                                                                                                                                                                                                                                                                           | 0,1                                                                                                                                                                                                                                                                                                                                           | 5 <b>0'</b>                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ∞,∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0      | 0.0                                                  | 0.0                                                                                                                                                                                                                                                                           | 0,0                                                                                                                                                                                                                                                                                                                                           | 100'                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0,0      | 0,0                                                  | 0,0                                                                                                                                                                                                                                                                           | 0,0                                                                                                                                                                                                                                                                                                                                           | 2001                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | STATE                                                | JUMP:                                                                                                                                                                                                                                                                         | (0 v <sub>2</sub> )                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOR JUMP:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0,v <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.0      | 0,0                                                  | 15,0                                                                                                                                                                                                                                                                          | ∞,2                                                                                                                                                                                                                                                                                                                                           | 10'                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0      | 0.0                                                  | 0,0                                                                                                                                                                                                                                                                           | 0,0                                                                                                                                                                                                                                                                                                                                           | 5 <b>0'</b>                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0      | 0.0                                                  | 0.0                                                                                                                                                                                                                                                                           | 0,0                                                                                                                                                                                                                                                                                                                                           | 10 <b>0'</b>                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u> </u> |                                                      | 0.0                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                           | 20 <b>0'</b>                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | E=5<br>2,4<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | STATE         E=5       E=7         2,4       3,4         0,0       0,0         0,0       0,0         0,0       0,0         0,0       0,0         0,0       0,0         0,0       0,0         0,0       0,0         0,0       0,0         0,0       0,0         0,0       0,0 | STATE JUMP:         E=5       E=7       E=10         2,4       3,4       3,5         0,0       0,0       0,0         0,0       0,0       0,0         0,0       0,0       0,0         0,0       0,0       0,0         0,0       0,0       0,0         0,0       0,0       15,0         0,0       0,0       0,0         0,0       0,0       0,0 | STATE JUMP: $(v, 0)$ E=5       E=7       E=10       E=14         2,4       3,4       3,5       7,9         0,0       0,0       0,0       0,1         0,0       0,0       0,0       0,0         0,0       0,0       0,0       0,0         0,0       0,0       0,0       0,0         STATE JUMP: $(0 v_2)$ 0,0       0,0       15,0 $\infty, 2$ 0,0       0,0       0,0       0,0       0,0         0,0       0,0       0,0       0,0       0,0 | STATE JUMP: $(v, 0)$ E=5       E=7       E=10       E=14 $v$ 2,4       3,4       3,5       7,9       1 $\sigma^*$ 0,0       0,0       0,0       0,1       5 $\sigma^*$ 0,0       0,0       0,0       0,1       5 $\sigma^*$ 0,0       0,0       0,0       0,0       10 $\sigma^*$ 0,0       0,0       0,0       0,0       20 $\sigma^*$ STATE JUMP: $(0 v_2)$ 0,0       0,0       15,0 $\infty$ ,2       1 $\sigma^*$ 0,0       0,0       0,0       0,0       5 $\sigma^*$ 0,0       0,0       0,0       0,0       5 $\sigma^*$ 0,0       0,0       0,0       0,0       5 $\sigma^*$ 0,0       0,0       0,0       0,0       10 $\sigma^*$ | STATE JUMP: $(v,0)$ SENS $E=5$ $E=7$ $E=10$ $E=14$ $v$ $E=5$ $2,4$ $3,4$ $3,5$ $7,9$ $1\sigma^{i}$ $0,0$ $0,0$ $0,0$ $0,0$ $0,1$ $5\sigma^{i}$ $0,5$ $0,0$ $0,0$ $0,0$ $0,0$ $10\sigma^{i}$ $0,1$ $0,0$ $0,0$ $0,0$ $0,0$ $10\sigma^{i}$ $0,1$ $0,0$ $0,0$ $0,0$ $0,0$ $10\sigma^{i}$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $20\sigma^{i}$ $0,0$ $0,0$ $0,0$ $15,0$ $\infty,2$ $1\sigma^{i}$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $5\sigma^{i}$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $10\sigma^{i}$ $0,0$ $0,0$ $0,0$ $0,0$ $0,0$ $20\sigma^{i}$ $0,0$ | STATE JUMP: $(v,0)$ SENSOR JUMP:         E=5       E=7       E=10       E=14 $v$ E=5       E=7         2,4       3,4       3,5       7,9       10°       0,0       0,∞         0,0       0,0       0,0       0,1       50°       0,5       0,∞         0,0       0,0       0,0       0,1       50°       0,0       0,∞         0,0       0,0       0,0       0,0       100°       0,1       0,6         0,0       0,0       0,0       0,0       200°       0,0       0,0         state       JUMP: $(0 v_2)$ SENSOR JUMP:         0,0       0,0       15,0 $\infty,2$ 10°       0,0       0,0         0,0       0,0       15,0 $\infty,2$ 10°       0,0       0,0         0,0       0,0       0,0       50°       0,0       0,0       0,0         0,0       0,0       0,0       0,0       50°       0,0       0,0         0,0       0,0       0,0       0,0       0,0       0,0       0,0         0,0       0,0       0,0       0,0       0,0       0,0       0,0 <td>STATE JUMP:       <math>(v,0)</math>       SENSOR JUMP:       <math>(v,0)</math>         E=5       E=7       E=10       E=14       <math>v</math>       E=5       E=7       E=10         2,4       3,4       3,5       7,9       1<math>\sigma^{1}</math>       0,0       0,<math>\infty</math>       0,<math>\infty</math>         0,0       0,0       0,0       0,1       5<math>\sigma^{1}</math>       0,5       0,<math>\infty</math>       1,<math>\infty</math>         0,0       0,0       0,0       0,1       5<math>\sigma^{1}</math>       0,5       0,<math>\infty</math>       1,<math>\infty</math>         0,0       0,0       0,0       0,0       10<math>\sigma^{1}</math>       0,1       0,6       0,<math>\infty</math>         0,0       0,0       0,0       0,0       10<math>\sigma^{1}</math>       0,1       0,6       0,<math>\infty</math>         0,0       0,0       0,0       0,0       10<math>\sigma^{1}</math>       0,0       0,0       0,0         state       JUMP:       (0 <math>v_{2}</math>)       SENSOR JUMP:       (0,<math>v_{2}</math>)         0,0       0,0       0,0       0,0       0,0       0,0       0,0         0,0       0,0       0,0       0,0       5<math>\sigma^{1}</math>       0,0       0,0       0,0         0,0       0,0       0,0       0,0       10<math>\sigma^{1}</math>       0,0       0,0       0,0         &lt;</td> | STATE JUMP: $(v,0)$ SENSOR JUMP: $(v,0)$ E=5       E=7       E=10       E=14 $v$ E=5       E=7       E=10         2,4       3,4       3,5       7,9       1 $\sigma^{1}$ 0,0       0, $\infty$ 0, $\infty$ 0,0       0,0       0,0       0,1       5 $\sigma^{1}$ 0,5       0, $\infty$ 1, $\infty$ 0,0       0,0       0,0       0,1       5 $\sigma^{1}$ 0,5       0, $\infty$ 1, $\infty$ 0,0       0,0       0,0       0,0       10 $\sigma^{1}$ 0,1       0,6       0, $\infty$ 0,0       0,0       0,0       0,0       10 $\sigma^{1}$ 0,1       0,6       0, $\infty$ 0,0       0,0       0,0       0,0       10 $\sigma^{1}$ 0,0       0,0       0,0         state       JUMP:       (0 $v_{2}$ )       SENSOR JUMP:       (0, $v_{2}$ )         0,0       0,0       0,0       0,0       0,0       0,0       0,0         0,0       0,0       0,0       0,0       5 $\sigma^{1}$ 0,0       0,0       0,0         0,0       0,0       0,0       0,0       10 $\sigma^{1}$ 0,0       0,0       0,0         < |

÷

. .

•

ł

teria suevei esta fittalitati en el e

•

Table 5.2 Delays in Detection for Different Thresholds: Jump Failures Measured in time steps from  $\theta_{T}$ .

113 - 1**3** 

-1


ų E

11

-72-

drops from the window. As we have seen before, in these cases the measurable effect of the failure on the residuals goes away quickly. Therefore, if we think of the GLR detector as, in a sense, matching the failure signature characteristic of a particular type of failure (as given by  $\underline{G}(k;\theta)$ ), then one would expect that very quickly after  $\theta_{\mathrm{T}}$  drops from the window  $\ell(k;\theta(k))$ would decrease. This happens because there is very little correlation with the information corresponding to  $\theta_{\mathrm{T}}$ +j, where j is small.

#### Step Failures

For step failures, once again, sensor failure detection is more sensitive to changes in the threshold than state failures. Whereas for state steps of size  $1/2\sigma$  or greater only a small delay to the time of detection is introduced, for sensor steps greater degradation in detection is seen even for  $1\sigma$ ' steps. A threshold of  $\varepsilon$ =14, for example, for the given window size used (M=30, N=0) makes  $1/10\sigma$ ' sensor steps very hard to detect. Notice that if we also increase our window size enough we regain detection, although with a delay which might not be acceptable depending on the application. This is due to the fact that while  $\theta_{\rm T}$  remains in the window  $\ell(k;\hat{\theta}(k))$  is non-decreasing for the case of sensor steps.

Figure 5.16 is a graph of  $\ell(k;\hat{\theta}(k))$  for 1/20 state steps and 50' sensor steps as it evolves in time. We can see the generally increasing nature of the GLR while  $\theta_{T}$  remains in the window for step failures, as mentioned above. Also note the rapid increase in the GLR soon after  $\theta_{T}$ . For higher failure magnitudes, the effect of an increased threshold reduces to the elimination

-73-



of false alarms and perhaps the introduction of a small delay in some cases, of the order of a couple of time steps. The figure illustrates another fact: the higher values of the GLR for state steps, even for smaller failures than sensor steps. It is a state step which leads to the most persistent effects and this is manifested in these graphs of the GLRS's.

In Table 5.3 we have the delays to detection for step failures and various thresholds just as in the case of jumps. In the case of state steps greater than 1/100 detection does not degrade significantly with the increased thresholds. In the case of sensor steps this is true only for small increases in the threshold as large delays may be introduced for somewhat larger thresholds. In general it is true that failures of magnitude 50 and 50' or greater are detected very rapidly and are not very sensitive to threshold changes of moderate size.

Concluding, higher thresholds look promising if one is interested in moderate sized or large failures. At the plice of a possible small delay before correctly detecting the failure, one gains a considerable reduction in the false alarms. If, on the other hand, one is interested in small failures ( $\leq 10$  for state jumps,  $\leq 50$ ' for sensor jumps,  $\leq 1/20$  for state steps and  $\leq 10$ ' for sensor steps), then the threshold selection must be carefully made. The trade-off between acceptable detection and false alarms is much more sensitive to small changes in the threshold for this range of failures. The study of the various detection probabilities takes on special significance in making such decisions.

-75-

-

1.0

| SI                | TATE STE         | P: (V, | 0)               |          | SENSOR         | R STEP: | (v,0) |                  |      |
|-------------------|------------------|--------|------------------|----------|----------------|---------|-------|------------------|------|
| v                 | €=5 <sup>°</sup> | €=7 ·  | ε=10             | E=14     | v              | £=5     | e=7   | ε=10             | ε=14 |
| 1/100             | 3,0              | 4,0    | 7,5              | 17,13    | 1/10 <b>0'</b> | 0,0     | 3,0   | 4,∞              | ∞,∞  |
| 1/2g              | 2.0              | 3,4    | 3,4              | 3,4      | 1/2 <b>J</b>   | 0,0     | 2,0   | 4,9              | ∞,26 |
| <u>-γ</u><br>1σ   | 1.1              | 2,1    | 2,3              | 2,3      | 10'            | 0,0     | 2,5   | 3,5              | 7,9  |
| 50                | 0.0              | 0.0    | 0.0              | 0,1      | 5 <b>0'</b>    | 0,1     | 1,3   | 1,3              | 2,4  |
| 100               |                  |        |                  | -        | 100'           | 1,0     | 0,1   | 0,1              | 0,1  |
| <u>100</u><br>20σ |                  | · _    | _                | <b></b>  | 200'           | 0,0     | 0,0   | 0,0              | 0,0  |
|                   | STATE ST         | Eh: (0 | ν <sub>2</sub> ) |          | SENSC          | R STEP: | (0 V  | ) <sub>2</sub> ) |      |
| 1/100             | 13.0             | 14.0   | 14,22            | 14,33    | 1/10 <b>0'</b> | 0,0     | 3,0   | 15,œ             | 27,∞ |
| 1/100             | 5.0              | 5.0    | 6.0              | 6,2      | 1/20'          | 0,0     | 0,0   | 15,0             | 27,∞ |
| 1/20              | 3,0              | 2.0    | 2.0              | 3.2      | 1 <b>σ'</b>    | 0,0     | 0,0   | 15,0             | 27,2 |
| 10                | 1,0              |        |                  | 0.0      |                | 0.0     | 0,0   | 0,0              | 0,0  |
| 50                | 0,0              | 0,0    |                  |          | 1001           | 0.0     | 0.0   | 0,0              | 0,0  |
| <u>100</u>        | -                |        |                  |          | 200            | 0.0     |       | 0.0              | 0.0  |
| 20σ               |                  |        |                  | . بي<br> | 200            | 0,0     | 0,0   |                  |      |

Table 5.3 Delays is Detection for Different Thresholds: Step failures. Measured in time steps from  $\theta_{T}^{}$ .

-

One way to resolve this problem in the case of step fr lures is to use a longer window, thus allowing the non-centrality parameter,  $\delta^2$ , to increase and so achieving a higher probability of detection. Another possibility which one might want to look at is the concept of a variable threshold to be used for small step failures. Because of the growing GLR's, after a failure has been detected with a relatively low threshold  $\varepsilon$ , one could raise the threshold to a value where only the highest GLR's would be accepted. This way the failure effects in some sense are isolated and tracked. This is a question for future consideration.

12.5

## V.6 $G(k; \theta)$ ; The Failure Signatures

In this section we will take a closer look at the  $G_i(k; \theta)$ , the failure signature matrices, which are at the center of all the computations which take place in the detector equations. If we recall,  $G_i(k; \theta)$  propagates the effect of a failure at time  $\theta$  to the residuals of the Kalman filter at time k.

We saw in section 2.2 that because we are working with linear systems, the residuals may be decomposed into two components

$$\underline{\gamma}(\mathbf{k}) = \underline{\gamma}(\mathbf{k}) + G(\mathbf{k}; \theta)\underline{\nu}$$

where  $\tilde{\underline{\gamma}}(k)$  is the residual which would be present in the absence of failures and  $\hat{\underline{\gamma}}(k) = G(k; \theta) \underline{\vee}$  is the contribution to the residuals from the failure  $\underline{\vee}$ . The log-likelihood ratio  $\ell(k; \theta)$  was seen to be a quadratic in the output of the matched filters,  $\underline{d}(k; \theta)$ , which in turn are weighted sums of the residuals. Both quantities depend directly on  $G(k; \theta)$ :

$$\underline{\mathbf{d}}(\mathbf{k}; \theta) = \sum_{\mathbf{j}=\theta}^{\mathbf{k}} \underline{\mathbf{G}}^{\mathrm{T}}(\mathbf{j}; \theta) \underline{\mathbf{v}}^{-1}(\mathbf{j}) \underline{\mathbf{\gamma}}(\mathbf{j})$$

$$\underline{\mathbf{C}}(\mathbf{k}; \theta) = \sum_{\mathbf{j}=\theta}^{\mathbf{k}} \underline{\mathbf{G}}^{\mathrm{T}}(\mathbf{j}; \theta) \underline{\mathbf{v}}^{-1}(\mathbf{j}) \underline{\mathbf{G}}(\mathbf{j}; \theta)$$

$$\underline{\mathbf{c}}(\mathbf{k}; \theta) = \mathbf{d}^{\mathrm{T}}(\mathbf{k}; \theta) \mathbf{c}^{-1}(\mathbf{k}; \theta) \mathbf{d}(\mathbf{k}; \theta)$$

The  $G(k; \theta)$  are precomputable and in Figures 5.17 to 5.20 we have plotted the elements of this matrix as functions of  $(k-\theta)$  (in our case  $G(k; \theta) = G(k-\theta)$  because the system is time-invariant) for the times corresponding to the window lengths implemented. Notice that in the case of state and sensor jumps, Figures 5.17 and 5.18, the elements of

-78-



10 9<sub>12</sub> 8 9<sub>22</sub> 9<sub>11</sub> V <sup>9</sup>21

Fig. 5.18 Sensor Jump G(r),  $r = k - \theta$ 

1.0

0

-1.0

-2.0

------

1

 $G(k-\theta)$  die out as  $k-\theta$  increases. This is what one would expect qualitatively for a stable system since the effects of an impulse are short-lived. Also note that for sensor jumps the  $G_{ij}(k-\theta)$  die out much faster. Recall that the sensor failures pass through one less integration (only the Kalman filter) than state failures (system dynamics and Kalman filter) before reaching the residuals as seen at the end of section V.2. Also the system eigenvalues are near one, the stability boundary for discrete-time systems. It is not surprising then that the effects of state failures on the residuals of the filter in this case persist for a longer time than for sensor failures.

Similarly, in the case of state and sensor step failures shown in Figures 5.19 and 5.20 we see a correspondence to the previously explained fact that their effects are more persistent due to their sustained presence.

Let us make some simple observations about the propagation of the failures to the residuals of the filter. Consider a failure  $\underline{v}$  of a given type and suppose we have computed the corresponding  $G(k; \theta)$  for the appropriate window size. The component  $\hat{\underline{\gamma}}(k)$  of the residual due to the presence of the failure is given by  $\hat{\underline{\gamma}}(k) = G(k-\theta)\underline{v}$  or, in our two-dimensional case.

| $\left[ \hat{\gamma}_{1}^{(k)} \right]$ |   | G <sub>11</sub> (κ-θ) | $G_{12}^{(k-\theta)}$ | ٧              |  |
|-----------------------------------------|---|-----------------------|-----------------------|----------------|--|
| $\hat{Y}_{2}(k)$                        | _ | G <sub>21</sub> (k-θ) | G <sub>22</sub> (k-θ) | ν <sub>2</sub> |  |

We see that  $G_{11}$  and  $G_{12}$  give the effect of the failure on the i<sup>th</sup> component of the residual. Alternatively,  $G_{1j}$  and  $G_{2j}$  give the effect of the j<sup>th</sup> failure component on the different elements of the vector of residuals.

In our case, with failures in orthogonal directions we get for the case of pitch rate failures



Fig. 5.19 State Step G(r),  $r = k - \theta$ 

-82-



Fig. 5.20 Sensor Step G(r),  $r = k - \theta$ 

a the same of the

-83-

$$\underline{v}^{T} = \{v_{1}, 0\}; \quad \hat{\gamma}_{1}(k) = G_{11}(k-\theta)v_{1}$$
$$\hat{\gamma}_{2}(k) = G_{21}(k-\theta)v_{1}$$

and similarly, for angle-of-attack failures

$$\underline{v}^{T} = \{0 \ v_{2}\}; \quad \hat{\gamma}_{1}(k) = G_{12}(k-\theta)v_{2}$$
$$\hat{\gamma}_{2}(k) = G_{22}(k-\theta)v_{2}.$$

By investigating the relationship between  $\underline{\nu}$  and  $\widehat{\underline{\gamma}}(k)$  on the one hand and the relationship between  $\widehat{\underline{\gamma}}(k)$  and  $\ell(k; \theta)$  on the other, one can extract some more information about the degree of detectability of different regions in the failure space. Letting  $\underline{\gamma}(j) = \underline{\widetilde{\gamma}}(j) + G(j; \theta) \underline{\nu}$  in the expression for  $d(k; \theta)$ ,

$$\underline{\underline{a}}(\mathbf{k}; \theta) = \sum_{\mathbf{j}=\theta}^{\mathbf{k}} \mathbf{G}^{\mathbf{T}}(\mathbf{j}; \theta) \mathbf{v}^{-1}(\mathbf{j}) [\tilde{\underline{\mathbf{y}}}(\mathbf{j}) + \mathbf{G}(\mathbf{j}; \theta) \underline{\mathbf{v}}]$$
$$= \underline{\widetilde{\mathbf{d}}}(\mathbf{k}; \theta) + \sum_{\mathbf{j}=\theta}^{\mathbf{k}} \mathbf{G}^{\mathbf{T}}(\mathbf{j}; \theta) \mathbf{v}^{-1}(\mathbf{j}) \mathbf{G}(\mathbf{j}; \theta) \cdot \underline{\mathbf{v}}$$
$$= \underline{\widetilde{\mathbf{d}}}(\mathbf{k}; \theta) + \mathbf{C}(\mathbf{k}; \theta) \underline{\mathbf{v}}$$

where  $\underline{d}(k; \theta)$  is what would appear if there were no failure at all. Then the log-likelihood ratio can be expressed in a similar fashion:

$$\begin{aligned} \hat{k}(\mathbf{k}; \theta) &= [\underline{\tilde{d}}(\mathbf{k}; \theta) + C(\mathbf{k}; \theta)\underline{v}]^{\mathrm{T}}C^{-1}(\mathbf{k}; \theta)[\underline{\tilde{d}}(\mathbf{k}; \theta) + C(\mathbf{k}; \theta)\underline{v}] \\ &= \underline{\tilde{d}}^{\mathrm{T}}(\mathbf{k}; \theta)C^{-1}(\mathbf{k}; \theta)\underline{\tilde{d}}(\mathbf{k}; \theta) + \underline{v}^{\mathrm{T}}C(\mathbf{k}; \theta)\cdot C^{-1}(\mathbf{k}; \theta)\underline{\tilde{d}}(\mathbf{k}; \theta) \\ &= \underline{\tilde{d}}^{\mathrm{T}}(\mathbf{k}; \theta)C^{-1}(\mathbf{k}; \theta)\cdot C(\mathbf{k}; \theta)\underline{v} + \underline{v}^{\mathrm{T}}C(\mathbf{k}; \theta)c^{-1}(\mathbf{k}; \theta)\cdot C(\mathbf{k}; \theta)\underline{v} \\ &= \underline{\tilde{k}}(\mathbf{k}; \theta) + 2\underline{v}^{\mathrm{T}}\underline{\tilde{d}}(\mathbf{k}; \theta) + \underline{v}^{\mathrm{T}}C(\mathbf{k}; \theta)\underline{v} \end{aligned}$$

If we carry this analysis further by studying the incremental variations in  $\mathcal{L}(\mathbf{k}; \theta)$  considering  $\widetilde{\mathcal{L}}(\mathbf{k}; \theta)$  as a nominal value we could map

Out regions in failure space,  $v_1 \times v_2$ , which for different times in the windows lead to larger values of  $l(k; \theta)$  and thus increasing the probability of detection. An analysis of this ki d may indicate some a priori limitations in the detection of certain failures. By further investigating these plots of the elements of  $G(k; \theta)$  and those of  $C^{-1}(k-\theta)$  shown before for the different failure types much qualitative information may be obtained on the performance of the detectors.

Another related area of interest is that of finding approximations to the various curves. Computationally it would be advantageous to be able to replace the  $G_{ij}(k; \theta)$ , for example, by simple functions such as constants or ramps if detector performance keeps within acceptable bounds. For example, curves of the form



1

1.1.1.1.1.1.



Figure 5.21









The reductions in computation and storage might be significant enough to make the implementation of the full GLR more attractive from a practical point of view. Furthermore, one could try to select the approximating functions in a way such that the sub-optimal design is less sensitive to noise or certain parameter changes, or to accentuate certain features which would render failure classification an easier task once detection has taken place. Alternatively, it may be possible to formulate an optimization problem the solution to which gives the approximating functions, from a specified class of functions, which minimize  $P_p$  while maximizing  $P_D$  or keeping it constrained to a certain interval  $(P_D \ge a, 0 \le a < 1)$ .

Further study of some of the possibilities mentioned seems fruitful in the long run since they offer potentially useful implementation characteristics thus increasing the practicality of this approach. Overall performance might be improved if noise and parameter sensitivity is reduced. When some sensitivity analysis is applied to the detectors it may be interesting to compare the performance to that obtained through the use of the above approximations.

5

## V.7 Directional Effects

Briefly, there are some instances when detector behavior shows some marked differences between data for failures of type  $(v_1, 0)^T$ , in the pitch rate dynamics or observations, and that for failures of type  $(0, v_2)^T$ , in the angle of attack dynamics or its observations. Through the study of such particular features of the performance of the detectors we expect to get some initial information on some sensitivity questions such as flexibility or rigidity of the detector response to changing failures, signal-to-noise ratios for the failures, etc.

The most interesting behavior is captured by Figures 5.24 and 5.25. They show plots of the likelihood ratios in the windows for two different times in the simulations. They are both for sensor steps; Figure 5.24 is for a  $20\sigma_q$ ' step in the pitch rate sensor and Figure 5.25 is for a  $20\sigma_q$ ' step in the angle-of-attack sensor. The shape of  $k(k; \theta)$  as a function of  $\theta$  for k = 12 is seen in Figure 5.24(a) and for k = 32 in Figure 5.24(b) for  $\theta$  inside the window at those times. The true time of failure is  $\theta_T = 5$ . Notice the monotonically decreasing shape from  $\theta_T$  on of the  $k(k; \theta)$  for  $(\nu_1, 0)^T$  the failure. Figure 5.25(a) and 5.25(b) show the corresponding data for a failure in the other direction,  $(0, \nu_2)^T$ .

The difference in the shape of the  $l(k, \theta)$  is striking. In contrast with the first case shown in Figure 5.28, the second case, shown in 5.25, is like a decaying exponential after  $\theta_{T}$ . This phenomenon becomes more noticeable and distinctive as the size of the step failure in the sensor is taken larger. It turns out that the first effect on the  $l(k; \theta)$  shape is seen in detection of steps in the state in <u>both</u> failure directions. Moreover, the second kind of effect is seen in the shapes of  $l(k; \theta)$  for

-87-

|                                            | 1                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                  | 1                                                           | a second second second second second second | 1                                                                                                              | ł     |
|--------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------|
|                                            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |                                                             |                                             |                                                                                                                |       |
|                                            | 11 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                       | $\frac{1}{2}$ $\frac{1}$ | 5-01                                                                                               |                                                             |                                             |                                                                                                                |       |
|                                            | 2+4//<br>01:2210                                             | • 0 91459+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                  |                                                             |                                             |                                                                                                                |       |
| •                                          | 01 25 (60)                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    | -88-                                                        |                                             |                                                                                                                | • •   |
| •                                          | ન નાં પ્રાંત્ર તે છે. તે | - 海豚肉的现象水白的肉带的 [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TLU25 OCCU                                                                                         | 2011年1月1日日                                                  | 5 ≕ Q(k∺1)                                  | 2)                                                                                                             |       |
| -                                          | TRAT NETS                                                    | E PATTURE VRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102 ··                                                                                             | -                                                           |                                             |                                                                                                                |       |
| 1                                          | 1.635                                                        | 668- <b>61</b> 5.8470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21-02                                                                                              |                                                             |                                             |                                                                                                                |       |
| <u> </u>                                   | <b>I I I I I</b>                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |                                                             |                                             |                                                                                                                |       |
| 1 :                                        | T T M 37                                                     | GLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GTR 3                                                                                              | BAR GRAPH                                                   | •                                           | •                                                                                                              |       |
|                                            | 1                                                            | 0.74182+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X X X X X X X X X X X X X X X X X X X                                                              | X X X X X X X X X X X X X X X X X X X                       | X X X X X X X X X X X X X X                 | X                                                                                                              |       |
|                                            | 2                                                            | 0.7169E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                            | X X X X X X X X X X X X X X X X X X X                       | X X X X X X X X X X X X X                   | XXXXXXXX                                                                                                       |       |
|                                            | <b>.</b> .                                                   | C.7494F+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXXXXXXXXXX                                                                                      | X X X X X X X X X X X X X X X X X X X                       | X X X X X X X X X X X X X                   | XXXXYXXXXX                                                                                                     |       |
|                                            | Ц                                                            | 0.7773E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXXXXXXX                                                                                         | X X X X X X X X X X X X X X X X X X X                       | X X X X X X X X X X X X X                   | X X X X X X X X X X X X X X X X X X X                                                                          |       |
| :                                          | 5                                                            | 0.84452+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X X X X X X X X X                                                                                  | ********                                                    | X X Y X X X X X X X X X X X X X X X X X     | <b>X X X X X X X X X X X X X X X X</b> X X X X X X X X X X X X X X X X X X X X                                 |       |
|                                            | 6                                                            | 0.79242+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · XXXXXXXXXX                                                                                       | *************                                               | X                                           | XXXXXXXXXXXX                                                                                                   |       |
|                                            |                                                              | 0.70778+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXXXXXXX                                                                                         | <u> </u>                                                    | XXXXXXXXXXX                                 | XXXXXXXX                                                                                                       |       |
|                                            | 8                                                            | C.66971+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>X X X X X X X X X</b> X                                                                         | X Y X X X X X X X X X X X X X X X X X X                     | XX X X X X X X X X X X X X X X X X X X      | XXXXX                                                                                                          |       |
|                                            | . <b>g</b>                                                   | 0.5766E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXXXXXXX                                                                                         | **************                                              | X X X X X X X X X X X X X X X X X X X       |                                                                                                                | •     |
|                                            | 10                                                           | 0.42625+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X X X X X X X X X X X X                                                                            | XXXXXXXXXXXXXXXXX                                           | XX                                          |                                                                                                                |       |
| -                                          | 11                                                           | 0.2689E+C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXXXXXXX                                                                                         | XXXXXX                                                      | •                                           | анан алан алан алан алан алан алан алан                                                                        |       |
| i i i i i i i i i i i i i i i i i i i      | 12                                                           | 0.1656E+23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X X X X X X X X X X X                                                                              |                                                             |                                             |                                                                                                                |       |
|                                            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • • • • • •                                                                                        | •• ••                                                       | 1                                           |                                                                                                                |       |
|                                            | RESIDUA                                                      | IS AT TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |                                                             | •                                           | Fig. 5.24(a)                                                                                                   | •     |
|                                            | 5.43                                                         | 808-02 -8.62/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03-01                                                                                              |                                                             | •                                           |                                                                                                                |       |
| ÷                                          | GL?S (LC                                                     | () : 0.5014E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                 |                                                             |                                             |                                                                                                                |       |
| , <b>x</b> j i                             |                                                              | e. e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NTT UDV 0000                                                                                       | 0.000 10 0TXF =                                             | $5 = \hat{\theta}(k=$                       | -32)                                                                                                           |       |
|                                            | *****                                                        | ***************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATTOX# MCCO                                                                                        | RED KA INGI                                                 |                                             |                                                                                                                |       |
|                                            | FSTIMAT                                                      | FE FAILURE VEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    | x                                                           |                                             |                                                                                                                |       |
| <u>, i</u>                                 | 1.79                                                         | 493-01 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 104-92                                                                                             |                                                             |                                             |                                                                                                                |       |
|                                            | · · · · ·                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CT P                                                                                               | BAR CRAPH                                                   |                                             | (ь)                                                                                                            |       |
| Ŝ.                                         | TING                                                         | G L R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22222<br>22222<br>2222                                                                             | · · · · · · · · · · · · · · · · · · ·                       | *****                                       | *****                                                                                                          |       |
| -                                          | 2                                                            | 0.48915+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>\</u><br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                      | ******                                      | XXXXXXXXXXXXXXXXXXX                                                                                            |       |
|                                            | 3                                                            | 6.49141+34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *********                                                                                          | · • • • · · · · · · · · · · · · · · · ·                     | **********                                  | *************                                                                                                  |       |
|                                            | с. ц                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    | ****                                                        | *****                                       | X X X X X X X X X X X X X X X X X X X                                                                          | X     |
| -                                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                        | 9.50795404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                                                                           | ***************                                             | *******                                     | X X X X X X X X X X X X X X X X X X X                                                                          |       |
|                                            | ∾                                                            | 0.49005+04<br>3.49005+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                           | **********                                                  | XXXXXXXXXXXX                                | *****                                                                                                          | ·     |
| 4                                          | 1                                                            | 0,40035794<br>0,0057.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                             | , , , , , , , , , , , , , , , , , , ,                       | XXXXXXXXXXXXX                               | X                                                                                                              |       |
| -                                          |                                                              | 5.48232709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *******                                                                                            | ***********                                                 | XXXXXXXXXXXX                                | XXXXXXXXXXXXXXXX                                                                                               |       |
|                                            |                                                              | 0.4/103704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ******                                                                                             | XXXXXXXXXXXXXXXXX                                           | XXXXXXXXXXXX                                | *****                                                                                                          |       |
|                                            | 19                                                           | 0.40075404<br>0.80075408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *****                                                                                              | Y X X X X X X X X X X X X X X X                             | XXXXXXXXXXXXXX                              | ****                                                                                                           |       |
|                                            |                                                              | 0.499222709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                            | * * * * * * * * * * * * * * * * * *                         | *****                                       | XXXXXXXXX                                                                                                      |       |
| -                                          | 12                                                           | 0.43018+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YXXXXXXXX                                                                                          | **********                                                  | *****                                       | XXXXXXXX                                                                                                       |       |
|                                            | 1.2                                                          | 0.41555.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YXXXXXXX                                                                                           | XXXXXY"YXXXXXXXXX                                           | XXXXXXXXXXXX                                | XXXXXX                                                                                                         |       |
| <u> </u>                                   | 14                                                           | 0.37908+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXXXXXX                                                                                          | ************                                                | **********                                  | XXXX                                                                                                           |       |
| -                                          | 15                                                           | C 3654 F+C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XYXXXXXXX                                                                                          | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                     | XXXXXXXXXXXXXXX                             | XXX .                                                                                                          |       |
| 1 t                                        | 10                                                           | 0.3070545400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XXXXXXXXX                                                                                          | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                     | X X X X X X X X X X X X X                   | CX                                                                                                             |       |
|                                            | 19                                                           | 1.32898+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXXXXXX                                                                                          | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                     | XXXXXXXXXXXX                                |                                                                                                                |       |
| 2                                          | 10                                                           | 0,30835+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXXXXX                                                                                           | X X X X X X X X X X X X X X X X X X X                       | (                                           |                                                                                                                |       |
|                                            | 20                                                           | 0.29182+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X X X X X X X X X                                                                                  | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                      | <u> </u>                                    |                                                                                                                |       |
|                                            | 21                                                           | 0.26958+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *****                                                                                              | ****************                                            | (                                           |                                                                                                                |       |
| 2                                          | 22                                                           | 6.24865+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXXXXXXX                                                                                         | <u> </u>                                                    | XXX                                         | Figure 5.24(3,b) 0                                                                                             | GLR'S |
|                                            | 22                                                           | 0.22638+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXXXXX                                                                                           | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                      | X                                           | Sensor Step of 2001                                                                                            | in    |
|                                            | 2.J<br>2.h                                                   | 0.2017E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ******                                                                                             | (XXXXXXXXXXXX                                               | LOL                                         | h Rate. $(V . 0): k=12$                                                                                        | 2 in  |
|                                            | 24                                                           | C.1815E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXXXXXX                                                                                          | X X X X X X X X X X X X X X X X X X X                       | FICC                                        |                                                                                                                |       |
| •                                          | 2 J<br>2 G                                                   | 0. 16142+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XXXXXXXXX                                                                                          | (XXXXXXXXX                                                  | (a)                                         | and $k=32$ in (b).                                                                                             |       |
|                                            | 27                                                           | 0.1422E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *****                                                                                              | (XXXXXX                                                     |                                             |                                                                                                                |       |
| ÷                                          |                                                              | 6.12493+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXXXX                                                                                            | XXXXX                                                       |                                             |                                                                                                                |       |
|                                            | 20                                                           | C. 1013E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XXXXXXXX                                                                                           | XX MOMONAL P                                                | AGE 18                                      |                                                                                                                |       |
|                                            | 2 F<br>2 F                                                   | C.7712E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ******                                                                                             | OF DOOR O                                                   | UALITY                                      |                                                                                                                |       |
|                                            | 31                                                           | 0.55381+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXX                                                                                              |                                                             |                                             |                                                                                                                |       |
| $= \frac{1}{2} \int_{-\infty}^{\infty} dx$ |                                                              | 0.2307E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XX                                                                                                 | -                                                           |                                             |                                                                                                                |       |
| ·· · · ·                                   | .) (.                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |                                                             |                                             |                                                                                                                |       |
| 24                                         |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    | ى ئىمىنىشىمىغۇمىمىرىكەن بارلىق يارلىق يارلىق يىلىمىغۇمىمىرى | and with the second second second           | An open a second general second s |       |

· · · · · ·

. .....

nya Pagean na sa sha

1 - or of 18991. 75

|           |                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                         | 1                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|           |                                                                                                                                                                                                                                                                                                                             | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                         | ŧ                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | RESIDUA                                                                                                                                                                                                                                                                                                                     | ES AT TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| <u>h.</u> | -5.39                                                                                                                                                                                                                                                                                                                       | 518-02 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5208-01                                                                               | 0(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| 1         | GL2S (LG                                                                                                                                                                                                                                                                                                                    | ) : 7.1467E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + C/I                                                                                 | -01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                           | (a)                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | •                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | He has the file charge of th                                                                                                                                                                                                                                                                                                | 化学校委托索索斯委托教授                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *FAILURF C                                                                            | CCURMD AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TTMR = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 0 (k-1                                                                                                                                                                  | 2)                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | ESTIMAT                                                                                                                                                                                                                                                                                                                     | ED FATLURS V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ECICE =                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           | · · ·                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | 9.26                                                                                                                                                                                                                                                                                                                        | 024-03 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5852+00                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | TIME                                                                                                                                                                                                                                                                                                                        | GLR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G                                                                                     | LF EVA CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | APH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| • •       | 1                                                                                                                                                                                                                                                                                                                           | G.1030E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X X X X X X                                                                           | XXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | XXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X X X X X X A                                                                                                                                                             | X                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | 2                                                                                                                                                                                                                                                                                                                           | 0.1050E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X X X X X X                                                                           | X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ******                                                                                                                                                                    | /                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | 3                                                                                                                                                                                                                                                                                                                           | 0.10/78+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K                                                                                                                                                                         | X X X X X X X<br>V V V V V V V V V                                             | V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|           | - 4<br>E                                                                                                                                                                                                                                                                                                                    | 0,11941+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       | . X X X X X X X X X X X<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ********                                                                                                                                                                  | ~~~~~~~~~~~<br>VVVV7VVV                                                        | X X-<br>VVVVVVVV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b></b>            |
| •         | Э.<br>С                                                                                                                                                                                                                                                                                                                     | 0.14076794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ******                                                                                                                                                                    | 446688888<br>7777777                                                           | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****               |
|           |                                                                                                                                                                                                                                                                                                                             | C 90055404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | × × × × × × × × × × × × × × × × × × ×                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <br>Y Y Y Y                                                                                                                                                               | ~~~~~                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | ,<br>Ω                                                                                                                                                                                                                                                                                                                      | 0.55639402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                           | •                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | Ğ                                                                                                                                                                                                                                                                                                                           | 0.38148+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XXXXX                                                                                 | XXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | 10                                                                                                                                                                                                                                                                                                                          | 0.27691+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XXXXXX                                                                                | XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | 11                                                                                                                                                                                                                                                                                                                          | C. 1882E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XXXXXX                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| ,         | 12                                                                                                                                                                                                                                                                                                                          | C.6738E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XX                                                                                    | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| •         | -                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •<br>•                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | -3.52                                                                                                                                                                                                                                                                                                                       | CEE-03 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 913F-02                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| * ***     | GLPS (LG                                                                                                                                                                                                                                                                                                                    | ) : 0.18205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C+C4                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Ъ)                                                                                                                                                                       |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | •                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           | A                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | شرطت بورات شراه سا                                                                                                                                                                                                                                                                                                          | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | **************************************                                                | CCHPED AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ካቸለኝ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 =                                                                                                                                                                       | O(K=:52)                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | *****                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CALUTION P (                                                                          | ACORED A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | SSTE NAT                                                                                                                                                                                                                                                                                                                    | ED FATLURE V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VECICP =                                                                              | Na€9860 A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | 3511 NAT<br>4.80                                                                                                                                                                                                                                                                                                            | TEE FAILURE N<br>16F-03 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VECICR =<br>2288E+00                                                                  | 7209820 A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | 3511 MA1<br>4.80                                                                                                                                                                                                                                                                                                            | TED FATLURE N<br>16F-03 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VECICE =<br>2288E+00                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | ESTENAT<br>4.80<br>TIME                                                                                                                                                                                                                                                                                                     | GLR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VECICE =                                                                              | SLP FAP GE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 D H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *****                                                                                                                                                                     | Ŷ                                                                              | м <u>а</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
|           | USTEMAT<br>4.80<br>TIME<br>2                                                                                                                                                                                                                                                                                                | GLR<br>C. 1136E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XXXXXX<br>YECICR =<br>2288E+00<br>(<br>XXXXXX<br>YXXXXX<br>YXXXXX<br>(<br>XXXXXX)     | SLP FAP GE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | APH<br>(XXXXXXXXX<br>(XXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XXXXXXX<br>XXXXXXXX                                                                                                                                                       | X<br>XXXXX                                                                     | ₩.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |
|           | USTINAT<br>4.80<br>TIME<br>2<br>3                                                                                                                                                                                                                                                                                           | GLR<br>C. 1136E+04<br>C. 1505E+04<br>C. 1505E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XXXXXX<br>XXXXXX<br>XXXXXX<br>XXXXXX<br>XXXXXX<br>XXXXX                               | LP PAP GE<br>(XXX XXXXXX<br>(XXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ал<br>19 п<br>12 х х х х х х х<br>12 х х х х х х х х<br>12 х х х х х х х х х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X                                                                                                                                                                         | X<br>X X X X X<br>X X X X X X X X X X X X X X                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|           | TIME<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                    | GLR<br>GLR<br>C. 1136E+04<br>C. 1278E+04<br>C. 1505E+04<br>G. 1820E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | XXXXXX<br>XXXXXX<br>XXXXXX<br>XXXXXX<br>XXXXXX<br>XXXXX                               | GLF FAP GF<br>(XXX XXXXXX<br>(XXX XXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | APH<br>(XXXXXXXXX<br>(XXXXXXXXX<br>(XXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X X X X X X X X<br>X X X X X X X X<br>X X X X X X X X X<br>X X X X X X X X X X X X X X X X X X X X                                                                        | X<br>XXXXX<br>XXXXXX<br>XXXXXXXX<br>XXXXXXXXX                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ****               |
|           | TIME<br>2<br>3<br>4<br>5<br>6                                                                                                                                                                                                                                                                                               | GLR<br>GLR<br>C.1136E+04<br>C.1505E+04<br>C.1505E+04<br>C.1505E+04<br>C.1820E+04<br>C.1820E+04<br>C.1820E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX                            | SLP FAP GE<br>(XXX XXXXXX)<br>(XXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A P H<br>(X X X X X X X X<br>(X X X X X X X X X X<br>(X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                           | X<br>XXXXX<br>XXXXXXX<br>XXXXXXXXX<br>XXXXXXXXX<br>XXXX                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ****               |
|           | USTINAT<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                       | GLR<br>GLR<br>C.1136E+04<br>C.1505E+04<br>C.1505E+04<br>C.1505E+04<br>O.1820E+04<br>O.1437E+04<br>C.1162E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VECICR =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       SLP     SLP     SLP       <      | APH<br>(XXXXXXXXX<br>(XXXXXXXXXX<br>(XXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X X X X X X X X<br>X X X X X X X X<br>X X X X X X X X X<br>X X X X X X X X X X<br>X X X X X X X X X X X X X X X X X X X X                                                 | X<br>XXXXX<br>XXXXXXXX<br>XXXXXXXXX<br>XXXXXXXX<br>Y                           | 55<br>(XXX<br>(XXXXXXX<br>(X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>(XYXX</b> )     |
| •         | ESTINAT<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                                                                                                                                  | GLR<br>GLR<br>C. 1136E+04<br>C. 1136E+04<br>C. 1278E+04<br>C. 1505E+04<br>C. 1820E+04<br>C. 1820E+04<br>C. 1437E+04<br>C. 1162E+04<br>O. 9094E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YECICR =<br>2288E+00<br>XXXXXX<br>XXXXXX<br>XXXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX | SLP     FAP     GF       GLP     FAP     GF       GLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A P H<br>(X X X X X X X X<br>(X X X X X X X X X X<br>(X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X X X X X X X X<br>X X X X X X X X<br>X X X X X X X X X X X X X X X X X X X X         | X<br>XXXXXX<br>XXXXXXXXX<br>XXXXXXXXX<br>XXXXXXXX<br>Y<br>Y                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>***</b> **      |
| •         | TIME<br>5<br>6<br>7<br>8<br>9                                                                                                                                                                                                                                                                                               | GLR<br>GLR<br>C.1136E+04<br>C.1505E+04<br>C.1505E+04<br>C.1505E+04<br>O.1820E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1299E+03<br>C.7299E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | YECICR =<br>2288E+00<br>XXXXXX<br>XXXXXX<br>XXXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX | SLP     FAP     GE       SLP     FAP     GE       (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Image: Control of the second secon | X X X X X X X<br>X X X X X X X<br>X X X X X X                                                                                                                             | X<br>XXXXX<br>XXXXXXXX<br>XXXXXXXX<br>XXXXXXXX<br>Y                            | 55<br>(XXX<br>(XXXXXXXX<br>(X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ****               |
|           | TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                                                                                                                                          | GLR<br>GLR<br>C.1136E+04<br>C.1505E+04<br>C.1505E+04<br>C.1505E+04<br>O.1820E+04<br>O.1820E+04<br>C.1162E+04<br>O.9094E+03<br>C.7299E+03<br>C.6232E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | YECICP =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       SLP     FAP     GF       SLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A P H<br>(X X X X X X X X<br>(X X X X X X X X X<br>(X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X X X X X X X X<br>X X X X X X X X X<br>X X X X X X X X X X<br>X X X X X X X X X X<br>X X X X X X X X X<br>X X X X X X X X X X<br>X X X X X X X X X X X X X X X X X X X X | X<br>XXXXX<br>XXXXXXXX<br>XXXXXXXXX<br>XXXXXXXX<br>Y                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (XYXX)             |
|           | ESTINAT<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                                                                                                                                                                                                 | GLR<br>GLR<br>C.1136E+04<br>O.1278E+04<br>C.1505E+04<br>O.1820E+04<br>O.1820E+04<br>O.1820E+04<br>O.1437E+04<br>C.1162E+04<br>O.9094E+03<br>C.7299E+03<br>C.6232E+03<br>O.5420E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | YECICR =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       GLP     FAP     GF       GLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A P H<br>(X X X X X X X X X<br>(X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X X X X X X X X<br>X X X X X X X X<br>X X X X X X X X X<br>X                                               | X<br>XXXXX<br>XXXXXXXXX<br>XXXXXXXX<br>Y                                       | **<br>(XXX<br>(XXXXXXX<br>(X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (XXXX)             |
|           | ESTINAT<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                                                                                                                                                                           | GLR<br>GLR<br>C.1136E+04<br>O.1278E+04<br>C.1505E+04<br>C.1505E+04<br>O.1820E+04<br>O.1820E+04<br>C.1162E+04<br>C.1162E+04<br>O.9094E+03<br>C.7299E+03<br>C.6232E+03<br>C.5420E+03<br>G.4168E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YECICR =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       GLP     FAP     GF       GXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | APH<br>(XXXXXXXXXX<br>(XXXXXXXXXX<br>(XXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XXXXXXX<br>XXXXXXX<br>XXXXXXXX<br>XXXXXXXX<br>XXXXXX                                                                                                                      | x<br>xxx x x<br>x x x x x x x<br>x x x x x x x x                               | **<br>(XXX<br>(X)<br>(X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ****               |
| · · · · · | TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                                                                                                                                                                                                        | GLR<br>GLR<br>C.1136E+04<br>O.1278E+04<br>C.1505E+04<br>O.1820E+04<br>O.1820E+04<br>O.1820E+04<br>O.1820E+04<br>O.1437E+04<br>C.1162E+04<br>O.9094E+03<br>C.7299E+03<br>C.6232E+03<br>C.6232E+03<br>G.4168E+03<br>O.3553E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YECICR =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GE       SLP     FAP     GE       (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A P H         (X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XXXXXXX<br>XXXXXXX<br>XXXXXXXX<br>XXXXXXXX<br>XXXXXX                                                                                                                      | X<br>XXXXX<br>XXXXXXXX<br>XXXXXXXX<br>Y<br>X<br>X<br>X<br>X<br>X<br>X          | **<br>(XXX<br>(X<br>(X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>*XYXX</b> :     |
|           | TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                                                                                                                                                                                  | GLR<br>GLR<br>C.1136E+04<br>O.1278E+04<br>C.1505E+04<br>O.1820E+04<br>O.1820E+04<br>O.1820E+04<br>O.1437E+04<br>C.1162E+04<br>O.9094E+03<br>C.7299E+03<br>C.6232E+03<br>C.5420E+03<br>G.4168E+03<br>O.3553E+03<br>O.3028E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YECICP =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GE       SLP     FAP     GE       SLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A D H         (X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XXXXXXX<br>XXXXXXX<br>XXXXXXXX<br>XXXXXXXX<br>XXXXXX                                                                                                                      | x<br>xxx x x<br>x x x x x x x x<br>x x x x x x x                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (XYXX)             |
| -         | TIME<br>2<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                                                                                                                                                                                               | GLR<br>GLR<br>C.1136E+04<br>O.1278E+04<br>C.1505E+04<br>O.1820E+04<br>O.1820E+04<br>O.1820E+04<br>O.1437E+04<br>C.1162E+04<br>O.9094E+03<br>C.7299E+03<br>C.6232E+03<br>O.5420E+03<br>G.4168E+03<br>O.3553E+03<br>O.3028E+03<br>C.2574E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YECICP =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       SLP     FAP     GF       SLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | APH<br>(XXXXXXXXX<br>(XXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XXXXXXX<br>XXXXXXX<br>XXXXXXXX<br>XXXXXXXX<br>XXXXXX                                                                                                                      | x<br>xxx x x<br>x x x x x x x x<br>x x x x x x x                               | 55<br>(XXX<br>(XXXXXXX<br>(X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (XYXX)             |
|           | TIME<br>2<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                                                                                                                                                                         | GLR<br>GLR<br>C. 1136E+04<br>O. 1278E+04<br>C. 1505E+04<br>C. 1505E+04<br>O. 1820E+04<br>O. 1820E+04<br>C. 1162E+04<br>O. 1437E+04<br>C. 1162E+04<br>O. 9094E+03<br>C. 6232E+03<br>C. 6232E+03<br>G. 4168E+03<br>O. 3553E+03<br>O. 3028E+03<br>C. 2574E+03<br>C. 1991E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | YECICR =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       GLP     FAP     GF       GXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A D H         (X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XX X X X X X<br>X X X X X X X<br>X X X X X X                                                                                                                              | x<br>x x x x x<br>x x x x x x x x<br>x x x x x x                               | **<br>(XXX<br>(X)<br>(X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ****               |
| •         | TIME<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                                                                                                                                                                | GLR<br>GLR<br>C.1136E+04<br>O.1278E+04<br>O.1278E+04<br>O.1278E+04<br>O.1505E+04<br>O.1820E+04<br>O.1820E+04<br>O.1437E+04<br>C.1162E+04<br>O.9094E+03<br>C.6232E+03<br>C.6232E+03<br>C.6232E+03<br>C.6232E+03<br>C.5420E+03<br>C.3553E+03<br>O.3028E+03<br>C.2574E+03<br>C.1991E+03<br>O.1749E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | YECICR =<br>2288E+00<br>XXXXXX<br>XXXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX  | SLP     FAP     GF       SLP     FAP     GF       SLV     SLV     SLV       SLV     SLV       SL | A P H         (X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XXXXXXX<br>XXXXXXX<br>XXXXXXXX<br>XXXXXXXX<br>XXXXXX                                                                                                                      | X<br>XXXXXX<br>XXXXXXXX<br>XXXXXXXX<br>Y<br>3                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>* X Y X X</b> : |
|           | TIME<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>13<br>10<br>13<br>10<br>13<br>10<br>13                                                                                                                                        | GLR<br>GLR<br>C.1136E+04<br>O.1278E+04<br>C.1505E+04<br>O.1820E+04<br>O.1820E+04<br>O.1820E+04<br>O.1437E+04<br>C.1162E+04<br>O.9094E+03<br>C.7299E+03<br>C.6232E+03<br>C.5420E+03<br>C.5420E+03<br>C.5420E+03<br>C.5420E+03<br>C.5420E+03<br>C.5420E+03<br>C.52574E+03<br>C.1991E+03<br>O.1749E+03<br>C.1322F+C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YECICR =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       SLP     FAP     GF       SLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A D H         (x × x × x × x × x × x × x × x × x × x ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XXXXXXX<br>XXXXXXX<br>XXXXXXXX<br>XXXXXXXX<br>XXXXXX                                                                                                                      | x<br>x x x x x<br>x x x x x x x x x<br>x x x x x                               | 55<br>(XXX<br>(XXXXXXX<br>(X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (XYXX)             |
| -         | TIME<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19                                                                                                                                                                                                    | GLR<br>GLR<br>C.1136E+04<br>O.1278E+04<br>C.1505E+04<br>O.1820E+04<br>O.1820E+04<br>O.1820E+04<br>O.1437E+04<br>C.1162E+04<br>O.9094E+03<br>C.7299E+03<br>C.6232E+03<br>O.5420E+03<br>C.6232E+03<br>O.3553E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.1322E+03<br>O.1749E+03<br>O.1322E+03<br>O.1135E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | YECICP =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       SLP     FAP     GF       SLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | APH<br>(XXXXXXXXX<br>(XXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XX X X X X X<br>XX X X X X X<br>XX X X X X X                                                                                                                              | x<br>x x x x x<br>x x x x x x x x<br>x x x x x x                               | 59<br>(XXX<br>(XXXXXXX<br>(X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>(XYXX</b> )     |
|           | ESTINAT<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20                                                                                                                                                                                           | GLR<br>GLR<br>C.1136E+04<br>O.1278E+04<br>C.1505E+04<br>O.1278E+04<br>C.1505E+04<br>O.1820E+04<br>O.1820E+04<br>O.1820E+04<br>O.1437E+04<br>C.1162E+04<br>O.9094E+03<br>C.7299E+03<br>C.6232E+03<br>C.6232E+03<br>C.6232E+03<br>C.6232E+03<br>C.6232E+03<br>C.12574E+03<br>C.12574E+03<br>C.1322E+03<br>O.1749E+03<br>O.1749E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03<br>O.135E+03                                                                                                                                                                                                                                                                                                                                                               | YECICR =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       GLP     FAP     GF       GXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | APH<br>(*********<br>(*********<br>(**************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XX X X X X X<br>X X X X X X X<br>X X X X X X                                                                                                                              | x<br>x x x x x<br>x x x x x x x x x<br>x x x x x                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>(XXXX</b> )     |
|           | ESTINAT<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>10<br>11<br>12<br>13<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | GLR<br>GLR<br>C.1136E+04<br>O.1278E+04<br>O.1278E+04<br>O.1278E+04<br>O.1505E+04<br>O.1820E+04<br>O.1820E+04<br>O.1437E+04<br>C.1162E+04<br>O.9094E+03<br>C.7299E+03<br>C.6232E+03<br>C.6232E+03<br>C.5420E+03<br>C.5420E+03<br>C.5420E+03<br>C.5420E+03<br>C.52574E+03<br>C.1991E+03<br>O.1749E+03<br>C.1991E+03<br>O.1749E+03<br>C.1322F+03<br>O.1749E+03<br>C.1322F+03<br>O.1752E+02<br>O.6752E+02<br>D.6752E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YECICR =<br>2288E+00<br>XXXXXX<br>XXXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX  | SLP     FAP     GE       SLP     FAP     GE       (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | APH         (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X X X X X X X<br>X X X X X X X X X X X X X                                                                                                                                | X<br>XXXXX<br>XXXXXXXXX<br>XXXXXXXX<br>Y<br>3<br>3<br>3<br>3<br>5<br>J.R's for | CXXX<br>(XXXXXXXX<br>(X<br>Censor St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ep fo              |
|           | SSTINAT<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>19<br>20<br>21<br>22                                                                                                                                                                                     | GLR<br>GLR<br>C.1136E+04<br>0.1278E+04<br>0.1278E+04<br>0.1278E+04<br>0.1505E+04<br>0.1820E+04<br>0.1437E+04<br>C.1162E+04<br>0.9094E+03<br>C.7299E+03<br>C.6232E+03<br>C.6232E+03<br>C.5420E+03<br>C.5420E+03<br>C.3553E+03<br>C.3028E+03<br>C.1991E+03<br>C.1991E+03<br>C.1991E+03<br>C.1991E+03<br>C.1322F+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.135E+03<br>C.1505E+04<br>C.1505E+04<br>C.1505E+04<br>C.1505E+04<br>C.1505E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+03<br>C.6232E+03<br>C.5420E+03<br>C.1505E+04<br>C.1505E+04<br>C.1505E+04<br>C.1162E+04<br>C.1162E+03<br>C.6232E+03<br>C.5420E+03<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+04<br>C.1162E+03<br>C.5420E+03<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.152E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.154E+04<br>C.15                                                                                                                                                                                                                                                                                                                                                                    | YECICR =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       SLP     FAP     GF       SLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A D H         (X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XXXXXXX<br>XXXXXXX<br>XXXXXXXX<br>XXXXXXXX<br>XXXXXX                                                                                                                      | X<br>XXXXX<br>XXXXXXXXX<br>XXXXXXXX<br>Y<br>SJR's for<br>of attack.            | <pre>     (0,v_);     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)     (2,2,2,2)      (2,2,2,2)      (2,2,2,2)     (2,2,2,2)     (2,2,2</pre> | ep for<br>k=12     |
|           | TIME<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>23                                                                                                                | GLR<br>(.1136E+04<br>0.1278E+04<br>0.1278E+04<br>0.1278E+04<br>0.1505E+04<br>0.1820E+04<br>0.1820E+04<br>0.1437E+04<br>(.1162E+04<br>0.9094E+03<br>0.7299E+03<br>0.7299E+03<br>0.5420E+03<br>0.5420E+03<br>0.3553E+03<br>0.3028E+03<br>0.3028E+03<br>0.3028E+03<br>0.3028E+03<br>0.3028E+03<br>0.3028E+03<br>0.3028E+03<br>0.1749E+03<br>0.1749E+03<br>0.1749E+03<br>0.1749E+03<br>0.1752E+02<br>0.6752E+02<br>0.5436E+02<br>0.5436E+02<br>0.4515E+02<br>0.4515E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YECICP =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       SLP     FAP     GF       SLY     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | APH<br>(X X X X X X X X<br>(X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XXXXXXX<br>XXXXXXX<br>XXXXXXXX<br>XXXXXXXXXXXXX                                                                                                                           | XXXXX<br>XXXXXXXXXX<br>XXXXXXXXX<br>Y<br>SDR's for<br>of attack,               | <pre>````````````````````````````````````</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ep for<br>k=12     |
|           | ESTINAT<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>19<br>20<br>21<br>22<br>23<br>24                                                                                                                                                                         | GLR<br>GLR<br>C.1136E+04<br>O.1278E+04<br>C.1505E+04<br>O.1278E+04<br>C.1505E+04<br>O.1820E+04<br>O.1820E+04<br>O.1820E+04<br>O.1820E+04<br>O.1437E+04<br>C.1162E+04<br>O.9094E+03<br>C.7299E+03<br>C.6232E+03<br>C.6232E+03<br>O.5420E+03<br>C.5420E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.3028E+03<br>O.1322F+03<br>O.1322F+03<br>O.135E+03<br>C.8093E+02<br>O.5436E+02<br>O.5436E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+02<br>O.4194E+0                                                                                                                                                                                                                                                                                                                                                                                        | YECICR =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       SLP     FAP     GF       SLY     SLY     SLY       SLY     SLY     SLY  | APH<br>(XXXXXXXXX<br>(XXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XXXXXXX<br>XXXXXXXX<br>XXXXXXXXX<br>XXXXXXXXXXX                                                                                                                           | XXXXX<br>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                      | <pre> (XXX (X) (X X X X X) (X) (X) (X) (X) (X) (X) (X) (X) (X) (</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ep for<br>k≂12     |
|           | ESTINAT<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>23<br>24<br>25<br>24<br>25                                                                                                             | GLR<br>GLR<br>C.1136E+04<br>O.1278E+04<br>O.1278E+04<br>C.1505E+04<br>O.1820E+04<br>O.1820E+04<br>O.1820E+04<br>O.1437E+04<br>C.1162E+04<br>O.9094E+03<br>C.7299E+03<br>C.6232E+03<br>C.6232E+03<br>C.6232E+03<br>C.5420E+03<br>C.5420E+03<br>C.5420E+03<br>C.5420E+03<br>C.5420E+03<br>C.5420E+03<br>C.1322E+03<br>O.3028E+03<br>C.1991E+03<br>C.1991E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.1322E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+03<br>C.132E+0                                                                                                                                                                                                                                                                                                                                                                              | YECICR =<br>2288E+00<br>XXXXXX<br>XXXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX  | SLP     FAP     GE       SLP     FAP     GE       SLV     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | APH<br>(XXXXXXXXXX<br>(XXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XXXXXXX<br>XXXXXXXX<br>XXXXXXXXX<br>XXXXXXXXXXX                                                                                                                           | XXXXX<br>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                      | <pre> (XXX (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ep foi<br>k≂12     |
|           | ESTINAT<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>23<br>24<br>25<br>26<br>27                                                                                                                                     | $\begin{array}{c} \text{GLR} \\ \text{O.1278E+04} \\ \text{GLSE+04} \\ \text{O.1278E+04} \\ \text{GLSE+04} \\ \text{O.1505E+04} \\ \text{O.1820E+04} \\ \text{O.1437E+04} \\ \text{G.1162E+04} \\ \text{O.9094E+03} \\ \text{G.7299E+03} \\ \text{G.6232E+03} \\ \text{G.6232E+03} \\ \text{G.5420E+03} \\ \text{G.5420E+03} \\ \text{G.5420E+03} \\ \text{G.5420E+03} \\ \text{G.5420E+03} \\ \text{G.752E+03} \\ \text{G.1322E+63} \\ \text{G.1991E+03} \\ \text{G.1749E+03} \\ \text{G.1322E+63} \\ \text{G.135E+03} \\ \text{G.6752E+02} \\ \text{G.5436E+02} \\ \text{G.5436E+02} \\ \text{G.4194E+02} \\ \text{G.3361E+02} \\ \text{G.3361E+02} \\ \text{G.755E+02} \\ G.755E+02$                       | YECICR =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       SLP     FAP     GF       SLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | APH         (X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XXXXXXX<br>XXXXXXXX<br>XXXXXXXXX<br>XXXXXXXXXXX                                                                                                                           | XXXXX<br>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                      | <pre>(XXX<br/>(XXXXXXXX)<br/>(X)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ep fon<br>k=12     |
|           | SSTINAT<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>23<br>24<br>25<br>26<br>27<br>29                                                                               | $\begin{array}{c} \text{GLR} \\ \text{O. 1278E+04} \\ \text{O. 1278E+04} \\ \text{GLSE+04} \\ \text{O. 1505E+04} \\ \text{O. 1505E+04} \\ \text{O. 1820E+04} \\ \text{O. 1437E+04} \\ \text{C. 1162E+04} \\ \text{O. 9094E+03} \\ \text{C. 7299E+03} \\ \text{C. 6232E+03} \\ \text{O. 5420E+03} \\ \text{G. 5420E+03} \\ \text{O. 5420E+03} \\ \text{O. 3028E+03} \\ \text{O. 1322E+03} \\ \text{O. 135E+03} \\ \text{O. 305E+02} \\ \text{O. 5436E+02} \\ \text{O. 5436E+02} \\ \text{O. 5436E+02} \\ \text{O. 3361E+02} \\ \text{O. 3361E+02} \\ \text{O. 2582E+02} \\ \text{O. 9520E+01} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | YECICP =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       SLP     FAP     GF       SLY     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | APH<br>(XXXXXXXXX<br>(XXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XXXXXXX<br>XXXXXXXX<br>XXXXXXXXXXXXXXXXXXXXX                                                                                                                              | XXXXX<br>XXXXXXXXXX<br>XXXXXXXXX<br>Y<br>SDR's for<br>of attack,<br>2 in (b).  | <pre> (XXX (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ep for<br>k=12     |
|           | SSTINAT<br>4.80<br>TIME<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>13<br>10<br>11<br>12<br>23<br>24<br>25<br>26<br>27<br>28                                                       | $\begin{array}{c} \text{EE}  \forall \text{ATL}  \text{URS}  \text{M} \\ \text{GLR} \\ \text{C} \cdot 1136E+04 \\ 0 \cdot 1278E+04 \\ 0 \cdot 1278E+04 \\ 0 \cdot 1505E+04 \\ 0 \cdot 1820E+04 \\ 0 \cdot 1820E+04 \\ 0 \cdot 1437E+04 \\ \text{C} \cdot 1162E+04 \\ 0 \cdot 9094E+03 \\ 0 \cdot 7299E+03 \\ \text{C} \cdot 6232E+03 \\ 0 \cdot 5420E+03 \\ \text{C} \cdot 6232E+03 \\ 0 \cdot 3028E+03 \\ 0 \cdot 3553E+03 \\ 0 \cdot 3028E+03 \\ 0 \cdot 3553E+03 \\ 0 \cdot 3028E+03 \\ 0 \cdot$ | YECICP =<br>2288E+00<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXXX<br>XXXX    | SLP     FAP     GF       SLP     FAP     GF       SLY     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | APH<br>(XXXXXXXXX<br>(XXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XXXXXXX<br>XXXXXXX<br>XXXXXXXX<br>XXXXXXXXX<br>XXXXX                                                                                                                      | XXXXX<br>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                      | (2, X X<br>(2, X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ep for<br>k≂12     |

с**т** • тус / •

بانتظر .

detections of state jumps, also in <u>both</u> directions. As we try to understand what is going on which leads to these results we expect to clarify further some of the interactions between detection of failures with the GLR method and peculiarities or characteristics of the specific system worked with. Some of the questions in the first paragraph are of interest here.

We can make some remarks here trying to explain the first-order components of this behavior. In Figure 5.19 we saw the elements of the signature matrix for sensor step failures plotted versus  $k - \vartheta$  for the window size considered. Notice that the elements  $G_{12}$  and  $G_{22}$ , which give the effect of a step failure in  $\alpha$  on the residuals, tend to zero while  $G_{11}$  and  $G_{21}$ , which give the effect of a step failure in q on the residuals, increase and reach non-zero values. Therefore the added components of the residuals due to a step in  $\alpha$  begin to diminish immediately after they appear and, not being very persistent, the  $\ell(k; \theta)$  for  $\theta > \theta_T$  decrease faste: than  $\ell(k; \theta)$  in the case of a step in q. In the latter case, a step failure in q, the added components of the residuals are persistent, if not increasing, and the  $\ell(k; \theta)$  for  $\theta > \theta_T$  decrease in value at a lower rate. While there may be other factors affecting the behavior of  $\ell(k; \theta)$ , they are secondary and modulate these first-order trends.

There are other small details also of similar features which point out differences in detecting failures in particular directions of failure space. For example, in detection of sensor steps in particular, the  $\ell(k; \theta)$ are larger in value, on the average, for failures in  $(v_1, 0)^T$  than for failures in  $(0, v_2)^T$ . It seems to be related to the noise handling capability in each case. In any case, it is necessary to understand the factors at work here, as important questions on the usefulness and

-90-

reliability of the GLR detectors are involved and their answers will yield insight.

ાહીં કે આવે માથે જેવા પ્રકાર છે. આ પ્રક્રોન્સ કેન્દ્ર કેન્દ્ર કેન્દ્ર કેન્દ્ર સ્ટેલ્સ શ્રીમાં આવે છે. આ ગામ કે ટેલ્સ

### V.8 Conclusions and Future Investigations

As stated in Section III the purpose of these simulations was to obtain meaningful results with physical interpretation in order to get insight into the dynamics of failure detection via the GLR approach. In the process we have gained some experience with failure detection techniques and some understanding which allows us to evaluate the performance of the detectors being studied. It also helps us to find out what kinds of questions we should be asking as we go along.

A realistic and yet simple model of an F-8 aircraft at a given flight condition was used in simulations in which the detectors corresponding to the various failure modes studied thus far were implemented. The range of failures considered provided vs with a large amount of data which displays the basic features of the performance of the GLR detectors.

The qualitative analysis and physical interpretation of the simulation results havealready allowed for an initial evaluation of the observed performance. They have also brought out some of the key factors determining the quality of detection. We expect to further enhance our understanding as we have more time to interpret these results and to integrate them with those to be obtained in the near future.

The overall detection performance seen is excellent for this stage of our research. Detection takes place immediately for most failures considered, certainly for the majority of those of direct interest from an applications point of view. Even those of very small size are still detectable, at least for step failures, although with some degradation in detection performance such as delays to detection time and reduced accuracy of the estimates.

-92-

In general, step failures are easily detected and identified and so are jump failures of sufficient magnitude, larger than 10 for example. In the case of jump failures those in the state are in general much easier to detect correctly than sensor failures. The noise effects are smoothed out by the system dynamics and the jump itself shows up as a persistent disturbance in the measurements. Thus we already anticipate some difficulty in distinguishing between state jump failures and sensor step failures of comparable size in cross-detection studies. Some initial simulation results in which all four detectors are implemented at once for a given failure seem to bear this out. This points to the importance or necessity of using more complex techniques to be able to improve detection and to eliminate redundancy. This was one of the reasons for looking at detection methods such as the GLR approach in the first place. The use of more sophisticated techniques in detection and estimation of failures is undoubtedly necessary when one contemplates compensation in the filter and/or controller for selfreorganizing closed-loop systems. Otherwise one runs the risk of massive and costly system changes without the certainty and accuracy of estimates called for by such action and resulting in degraded, if not unstable, overall system behavior.

The area of decision threshold selection and false alarms must be looked at in more detail. The apparent false alarm rates observed in the simulations are higher than the computed false alarm probability,  $P_F$ . We need to study the correlations between the  $\ell(k; \theta)$ 's with both  $\theta$  and k varying. For the GLR method presently worked on the log-likelihood ratios are noncentral  $\chi^2$  random variables and obtaining their correlations is difficult. This is one of the reasons for studying the simplified GLR (SGLR)

-93-

11. 11. July

₽

-

بإدفار كمارية كمنيو أقرار المنطقة فأرقر

method in which the failure is assumed to be of a fixed form and its estimation is removed from the detection process. For this technique the  $l(k; \theta)$ 's are gaussian random variables which therefore makes such statistical analysis feasible. We hope to derive such quantities as the conditional probability of a false alarm after a false alarm has occurred, the conditional probability of detection after a correct detection and other similar ones of practical and theoretical interest.

The SGLR will be looked at for other reasons as well. The detector equations are being developed for the four failure modes studied so far and the same failures will be simulated as for the full GLR once they are ready. From the results we get we expect to be able to answer some questions on simplifications and sensitivity. The amount of computation and storage necessary for implementing the SGLR method is significantly less than for the full GLR method so that questions arise as to whether the performance will also degrade accordingly. If not, there is the possibility of using the SGLR detectors during normal operation and of switching over to the full GLR once detection takes place. Because of the greater ease and costeffectiveness of the SGLR one may be able to implement a bank of such detectors for a range of failures of interest in the monitoring phase failure detection. There are many interesting and related questions which remain to be asked as we get more involved in the analysis of the performance of the SGLR method of detecting failures.

والمتكففين فالمواجدين والأفاريك المحارث بمناكبا منحاك منحاط والمناقب المنارك والمحرمين فللما والمعالمات

والمنافع المراقية والمراقية

One of the next areas to be worked on, which is already under investigation and has been mentioned is that of cross-detection. This refers to the possibility of detecting some or all kinds of failures with a few or one kind of detector only. This is of obvious interest since

-94-

one of the drawbacks of the GLR approach as it is now implemented is the fact that a detector is designed for each particular failure mode. Remarks similar to the above ones for the SGLR also apply here except for those about correlations of  $k(\mathbf{k}; \theta)$ , a problem which remains in this case since it still is a  $\chi^2$  random variable. There are interesting comparisons to be made, once we have some data, on the minimum implementation required to achieve a specified performance in detection as measured in some relevant way.

Another problem that we will be looking at in the near future is what we call detection under mismatched conditions. Briefly, this refers to the question of the actual performance obtained when the real system is somewhat different from the model on which our calculations for the detectors are based. Everything is done as before, but the measurements are made on the simulation of the aircraft at a different flight condition, for example. We expect the results here to tell us something about the sensitivity of the detector performance with respect to changes in parameters of the model which is to represent our knowledge of the real physical system. By doing similar tests on the SGLR detectors we can evaluate the relative robustness of each design to varying conditions. Again these are very important areas that must be investigated since they have many ramifications of interest for applications.

Still further along remains a more complete sensitivity analysis of both the full GLR and the SGLR techniques. We expect to derive some equations for the changes in certain variables of interest such as  $\{C(k; \theta)\}_{ij}$ , the elements of the information matrix, and  $P_D$  and  $P_F$  with respect to variations in a parameter vector of importance.

-95-

. Jac and and in a state of a sta

والمستقل المتلك المستعلم والمستغر بالمتلك

لديمانا ((گريم ، ، ، ، ، الديسية

## VI. Detailed Description of the Multiple Detector Simulation Program (MDSP)

In order to obtain practical insights into GLR performance, extensive simulation experience is necessary. A single system provides a common basis for comparison and analysis. We are currently focusing our attention on the F-8 aircraft as described in Chapter II. Simulations of a system under different conditions may have a large common data set such as the detector matrices (i.e.,  $G(k; \theta), C^{-1}(k; \theta), \text{etc.}$ ). Hence an efficient simulation program must be able to take this into account to eliminate redundant generations of such data sets. In addition, the program should be able to handle different systems sequentially in a single run. Presently, only the four basic detectors (state jump, state step, sensor jump and sensor step) are simulated. However, other detectors such as simplified GLR will be considered soon. Therefore, the program should have enough flexibilities to allow additions. The Multiple Detector Simulation Program (MDSP) is a FORTRAN program which has been developed to achieve these objectives.

The MDSP simulates a system with a single failure and with a set of up to four detectors simultaneously in operation. The MDSP can simulate any number of systems sequentially in each run. For each system, simulations can be performed with different sets of detectors, and for each system and each set of detectors, simulations may be done with a set of different failures, one after another. In order to reduce redundant computations of detector matrices, when detectors are used repeatedly, all detectors are computed before any simulation and stored. They are activated as needed.

Another feature of the MDSP is its ability to simulate mismatched systems. The detectors can be computed according to one system and failure

# PREUEDING PAGE BLANK NOT FILMEN

-97-

mode while the simulations are actually of another. This option is aimed at the study of the sensitivity of GLR technique to system parameter variation.

The following section will prosent a detailed description of the features, structures, function and usage of MDSP. Together with the appendix containing the commented program code and further details in the program algorithm, this section provides a complete description of MDSP. Finally, some possible further additions to MDSP are discussed.

# I. The MDSP: Detailed Description

An overview of the program functions is presented in section I.1. I.2 contains the definitions of input data and program usage. Section I.3 describes the structures of MDSP in detail. Precautionary remative are made in I.4.

Note that this section is intended to provide a clear view of the approach and structure of MDSP and the detailed description of algorithms is not included. The reader is referred to the commented program code in the approdix.

# I.1 Program Functions

÷

પ્રદાર ગાંધાળીના ભાષાને સંબંધાન કેવાં, તેલે કેવના બેંગળવાને તેલે છે.

C.2

MDSP simulates linear constant discrete time systems and Kalman filters as described in Chapter 2. Furthermore, the filter is assumed to have reached a steady state; hence the filter gain K(k) becomes a constant matrix K.

The failure modes that MDSP is able to simulate are state jump, state step, sensor jump and sensor step failures numbered type 1, 2, 3

-98-

1742 1

and 4 respectively. The detectors that are based on these failure modes are numbered type 1, 2, 3 and 4 representing state jump, state step, sensor jump and sensor step detectors respectively. More detailed model description of the failures may be found in Chapter 2.

The sequence of operations of MDSP may be traced through by following the function flow diagram (Figure 6.1). It is helpful to bear in mind that MDSP is divided into six blocks (0, 1, 2, 3, 4, 5) each having a different function. After initializations in block 0, the system and filter matrices are read in (block 1). All the detector matrices required in the subsequent simulations are computed according to this system and filter (block 2). If a mismatched system simulation is not chosen, the program proceeds to set up the bank of detectors (the detectors chosen to operate simultaneously during a simulation) in block 3. Otherwise, the mismatched system and filter matrices are read in (block 0), replacing the previous system and filter, before setting up the detector bank. The new system and filter are the ones to be simulated; the old system and filter are the ones the detector system is based upon. Then the simulations of the system, filter and detector bank are performed in block 5 with each of the designated failures inputed in block 4. During the simulation, outputs consisting of detector decision, values of the likelihood ratio, etc., are also provided. After all the simulations of the failures are processed, the program proceeds to determine if another detector bank has been chosen by the user. If so, the new detector bank is set up (block 3) and the cycle repeats. Otherwise MDSP will determine (through data cards) if unother system is to be considered. If so, the process after initialization is repeated. Otherwise, MDSP will terminate execution.

-99-

يتنبع والمراجع ويغرفونها والمتروية

فتعقق والمقار والمقار والمتروف والمتروف



## I.2 Program Usage and Input Data

Execution of the program is controlled by variables in the input data set which can be categorized into four subsets:

(I) System and Filter Matrices I/0

LNS - LNS = 9 signals that execution will terminate after the present system has been simulated. Otherwise, the program will proceed to consider a new system after the present one.

IHEAD - An integer array containing the heading or title of the system; its maximum length is 68 characters.

NX - dimension of state vector

NZ - dimension of sensor vector

IOS - I/O control variable of matrices:

IOS = 4 - read and write matrices with title cards IOS = 5 - read matrices with title cards.

- LSS mismatch control. If LSS = 0, no mismatched system simulation will be performed. A nonzero value indicates a mismatched simulation.
- IOM I/O control variable of matrices of the mismatched system; it takes the same values and meaning as IOS.

These variables are all entered on one card with the following format:

READ (5, 11) LNS, IHEAD, NX, NZ, IOS, LSS, IOM

11 FORMAT (I1, 1X, 17A4, 2(12, 1X), 1X, 3I1)

and the second second second

In addition, we have the matrix variables:

-101-

PHI -  $\Phi$ H - H GNX - G<sub>NX</sub> GNZ - G<sub>NZ</sub> FK - K PP - P(k|k-1) in steady state, i.e. k+ $\infty$ P - P(k|k) in steady state

All of these matrices are read in and printed out using the subroutine MATIO. The formats involved are:

Title Card:

المتطبقة ممرا يخبؤه يحقق يتمعوا للأول بالمرما متصبيهم

READ (5, 1002) 1002 FORMAT (1X, 79H) WRITE (5, 1002)

Matrix entries:

Each row of a matrix is started on a new card; a row containing more elements than a single card can hold may use as many cards as required as long as the elements are entered consecutively. The format involved is 1000 FORMAT (8E10.0).

(II) Computation and Storage of Detector Matrices

This set of data is entered via a namelist, DETCMP and hence follows the namelist input format.

NUD - number of detectors to be computed and stored.

IOD = [0]\*. output control of detector matrices. If IOD = 0, no printing of matrices is done. A nonzero value will cause the printing of  $G(k-\theta)$  for  $k-\theta = 0, 1, ... M(I)$  (see below for definition of M(I), N(I) and  $C^{-1}(k-\theta)$  for  $k-\theta =$ N(I), N(I)+1, ... M(I). Simple modifications may be made to point out other matrices such as  $F(k-\theta)$ ,  $G_{1}(k-\theta)V^{-1}$ , etc.

ID - [1] an array containing the detector type number to be computed.

M = [11]. array of the  $M_i$  values in the detector window specification. N = [0]. array of the  $N_i$  values in the detector window specification.  $\{ID(I), M(I), N(I)\}$  specify the type and window of the I<sup>th</sup> detector in storage.

\*[ ] contains the default values if no value is specified on data card. The variables ID, M and N are arrays and each element in these arrays takes a default value as indicated in the brackets.

## (III) Detector Selection

This data set is also entered via a namelist, DETSZL, which specifies the detector bank for simulation.

LND = [0]. LND = 9 indicates the end of simulation of the present system. Otherwise, a new detector bank is chosen for simulation and it is specified in this namelist.

IDS - array containing the detector types in the bank.

MS = [11]. array of the  $M_i$  values of the detectors in the bank. NS - [0]. array of the  $N_i$  values of the detectors in the bank.

zer zi sa za c. da il dout i

EP - [6]. array of CLR threshold values for the detector in the bank.

 $\{IDS(I), MS(I), NS(I), EP(I)\}$  specifies the I<sup>th</sup> detector in the bank. The detector bank should only contain detectors that are in storage and possibly with windows that are smaller than the corresponding ones in storage but these windows must be contained in the ones in storage.

(IV) Failure and Simulation Data

This set is entered via the namelist FASIM.

- LNF [0]. LNF = 9 indicates the end of simulation with the present detector bank. Otherwise, simulation is to be performed with the true failure specified in this namelist.
- IOP = [2]. Outp\_ option for detector decision; it can take on
  possible values (1, 2, 3). The options are explained in the
  next section under block 5.
- IFL [1]. the type of failure to be simulated.

KTF - [3]. the true failure time (  $\geq$  1)

NKM - [15]. time after which simulation is to stop.

RNU - [0]. failure vector v (of type ILF).

(V) Captions

This data set is constant and is read in only once and before all other data. It consists of two integer arrays, ITYPE and IDET which contain characters that are to be printed at appropriate places of the output as captions. ITYPE - a 5x4 array with contents:

| locations                    | contents          |  |  |  |
|------------------------------|-------------------|--|--|--|
| ITYPE(I,1) for $I = 1, 2, 5$ | JUMP IN STATE AT  |  |  |  |
| ITYPE(I,2) for $I = 1, 2, 5$ | STEP IN STATE AT  |  |  |  |
| ITYPE(I,3) for $I = 1, 2, 5$ | JUMP IN SENSOR AT |  |  |  |
| ITYPE(I,4) for $I = 1, 2, 5$ | STEP IN SENSOR AT |  |  |  |

IDET - a 5x4 array with contents:

The state of the s

| locations                    | contents             |
|------------------------------|----------------------|
| IDET(I,1) for $I = 1, 2, 5$  | STATE JUMP DETECTOR  |
| IDET(I,2) for $I = 1, 2,, 5$ | STATE STEP DETECTOR  |
| IDET(I,3) for $I = 1, 2, 5$  | SENSOR JUMP DETECTOR |
| IDET(1,4) for $I = 1,2,5$    | SENSOR STEP DETECTOR |

Under this setup, the sub-array of ITYPE with a failure type number as the constant second array index contains the description in words of the failure type. As a result, the failure description is indexed by the failure type number. IDET and detector type number have the same relationship as ITYPE with failure type number.

For the present version of MDSP, detector type as well as failure type can take on four values: 1, 2, 3, 4 representing the four basic types: state jump, state step, sensor jump and sensor step respectively. Note that the main program control variables are the flags LNS, LSS, LND and LNF.

To illustrate the ordering of these input data, the following example is included.

## I.3 Program Structure

2.81.4

vergetter and a set of the set

MDSP is divided into six blocks that interact with one another much like subroutines. The subroutine approach is not employed due to the need to pass a large number of arguments and the number involved. The blocks are separated clearly both functionally and physically so as to facilitate the understanding of the program. The one disadvantage is that attention must be paid to variable names so that they are not used for different quantities in future alterations of the program.

The six blocks divide the code according to the following conventions:

| statement numbers |   |      | numbers     | block function                      |
|-------------------|---|------|-------------|-------------------------------------|
| Block             | ŧ | from | to          |                                     |
| 0                 |   | 0    | 999         | initializations                     |
| 1                 |   | 1000 | 1999        | system and filter matrices I/O      |
| 2                 |   | 2000 | 2999        | compute and store detector matrices |
| 3                 |   | 3000 | 3999        | detector selection                  |
| 4                 |   | 4000 | <b>4999</b> | input failure and simulation data   |
| 5                 |   | 5000 | 5999        | simulation and output results       |

There are no intermingling and overlapping statements from different blocks and there are comment statements separating the blocks and stating their functions. All format statement numbers contain at most two digits with the most significant digit indicating the block number in which the format is first used and defined.

The following is a description of the block functions.

-106-

(I) Block 0 - Initializations

والتظرفة فقضمتهم والمعرور بمنصوبهم فالمستقاصات فروقا ليعتم والمراد فالمراد والمراد فالمرادي والمرادي والروار

1.4.1 H 1.4.1

This block initializes some interval variables of the program. (For details consult comments in program code). The caption arrays ITYPE and IDET are initialized via read statements.

(II) Block 1 - System and Filter Matrices I/O

This block provides the code for reading in and printing out system and filter matrices as well as the I/O for the mismatched system and filter. In fact, the same code and storage are used for the original and mismatched matrices. If the mismatch option is used, the original system matrices are erased after the detectors are calculated.

(III) Block 2 - Computation and Storage of Detector Matrices

As the execution of this block begins, the data namelist DETCMP is read in. By detector (matrices), it is meant the matrices  $F(k - \theta)$ ,  $G(k - \theta)$ ,  $G^*(k - \theta)V^{-1}$ ,  $C(k - \theta)$  and  $C^{-1}(k - \theta)$ . Even though not all of these matrices are used in the other blocks in the present version of MDSP, all of them are stored, anticipating future additions that would utilize them.

The G matrices of a detector are ordered in increasing value of  $k - \theta$  and stored in a section of a big storage area for the G matrices of all the detectors chosen to be stored. Pointers are created to indicate the beginning of the sections for different detectors. Other detector matrices are likewise stored. The term "pointer" has the meaning of an "offset" throughout the content of this documentation. Rather than pointing directly to any section, the pointer provides the storage space to be skipped from the very beginning of the big storage to get to the

-107-

108-

section. We have the following relation of storage and pointers.

| matrix<br>type           | name of the<br>single matrix<br>in program | name of the<br>big storage | pointers<br>associated with<br>the storage |
|--------------------------|--------------------------------------------|----------------------------|--------------------------------------------|
| F (k-0)                  | F                                          | FS                         | LF                                         |
| G(k-0)                   | G                                          | GS                         | LG                                         |
| G' (k-0) V <sup>-1</sup> | GTVIN                                      | GVS                        | LV                                         |
| C (k-8)                  | С                                          | CS                         | rc                                         |
| $c^{-1}(k-\theta)$       | CINV                                       | CIS                        | rc                                         |

Note that the pointers are in fact arrays.

U. A

Recall that the dimension of the G matrix depends on the type of failure assumed, (NZ) x (NX) for state failures and (NZ) x (NZ) for sensor failures. Hence, the second dimension varies from detector to detector and is stored in an array LNZ. Then for the I<sup>th</sup> detector, we have the following specifications and pointers:

 $\{ID(I), M(I), N(I), LNZ(I), LG(I), LF(I), LC(I), LV(I)\}.$ 

The sizes of the sections in storages may be determined as follows:

: :::

| Storage | size of I <sup>th</sup> section |
|---------|---------------------------------|
| FS      | (NX) * (M(1) + 1)               |
| GS      | (NZ) * (M(I) + 1)               |
| CS, CIS | LNZ(I) + (M(I) - N(I) + 1)      |
| gvs     | LNZ(I) * (M(I) + 1)             |


. Т. Э 21

-----

According to the previously defined nature of the pointers, we have

$$LG(1) = LF(1) = LC(1) = LV(1) = 0$$

The value of the (I+1)st pointer is equal to the value of the Ith pointer plus the size of the Ith section.

For nonzero values of IOD, GS and CIS are printed. However, other storages may also be printed with some very simple addition to MDSP.

## (IV) Detector Selection

The namelist DETSEL is read in at the beginning of the hlock.

Since all the detectors have been computed and stored, any selection of these detectors only involves the correct identification of pointers. For each value in IDS (Andicating the detector type) the array ID is searched for the same value. Then corresponding values in the pointer arrays set up in block 2 are assigned to a new set of pointer arrays. Consider the Ith detector in the detector bank. If J is the index of ID such that

IDS(I) = ID(J)

then we set

ł

JG(I) = LG(J) JF(I) = LF(J) JC(I) = LC(J) + (NS(I) - N(I)) + LNZ(J) JV(I) = LV(J) JNZ(I) = LNZ(J)

If IDS(I) does not have a matching value in ID or [MS(I), NS(I)] is not compatible with [M(J), N(J)], i.e. MS(I) > M(J) and/or NS(I) < N(J) then IDS(I) is dropped and the following values in IDS, MS, and NS are moved up in the arrays while a message is printed indicating such incompatibility. Then NUDS is also decremented by 1.

Since we allow  $NS(I) \ge N(J)$ , the first C matrix in CS we want considered is NS(I) - N(J) matrices after the beginning of the section. Hence, JC(I) = LC(I) + (NS(I) - N(J)) \* LNZ(J).



In addition, two more pointer arrays are created: JR and JD. The former points to GLRS (storage for  $l(k; \theta)$  of all the detectors) and the latter points to DTS (storage for d'(k;  $\theta$ ) of the detectors). The nature of JR and JD are similar to the other pointers. The sizes of the Ith sections in GLRS and DTS are MS(I) - NS(I) + 1 and MS(I) + 1 respectively.

The detector bank specifications (IDS, MS, NS) are printed for eacy reference.

1.1.1

(V) Block 4 - Input Failure and Simulation date

Here the namelist FASIM is read in and information contained in FASIM is printed out for easy reference.

(VI) Block 5 - Simulation and Output

÷Ŧ

This block consists of four sub-blocks: (a) system and filter simulation, (b) generation of  $l(k; \theta)$  for the detectors in the bank, (c) detector decisions, and (d) output.

(a) System and filter simulation

The system is simulated with the failure specified in block 4. The filter generates the residual necessary for the detectors. The algorithms involved are simple and the code is self-explanatory.

(b) Generation of  $\ell(\mathbf{k}; \theta)$ 

The computation of  $d(k; \theta)$  and  $\ell(k; \theta)$  is straightforward. However, the manipulation of quantities in the storage DTS is involved and is explained in detail in the appendix. This sub-block generates the  $d(k; \theta)$ 's and  $\ell(k; \theta)$ 's for the detectors in the bank via subroutine calls to GENDLR.

(c) Detector Decision

The GLRS array is examined to determine if any  $\ell(k; \theta)$  is greater than the thresholds (EP). The number of  $\ell(k; \theta)$  crossing the threshold is recorded for each detector and the five times (values of  $\theta$ ) that have the largest  $\ell(k; \theta)$  exceeding the threshold for each detector are ordered in decreasing values of  $\ell(k; \theta)$ .

-112-

A maximum likelihood estimate (MLE) of the failure vector is made for the  $\theta$  the has the largest  $\ell(k;\theta)$  by each of the detectors that detects a failure (i.e. having some  $\ell(k;\theta)$  exceeding the threshold).

:-----

1921.

3

(d) Output

Presently there are three output options all of which deal with the plotting of GLR bar graphs. At each time step, the time and the Kalman filter residual  $\gamma$  are printed. For all three options, if no  $l(k;\theta)$  crosses the threshold for a detector, nothing is printed for that detector. Otherwise the following is printed for the detector:

- 1. detector number is the number J such that IDS(J) specifies the present detector and hence is not the type number. This is done because the detector bank may contain two detectors of the same type but having different windows. Then the type number is not a good identification. (The correspondence between a detector, its description (type window and threshold) and its detector number in the bank were pointed as block 3 was executed).
- 2. the largest  $\ell(k;\theta)$  value.
- 3. the five values of  $\theta$  having the largest  $l(k;\theta)$  exceeding the threshold ordered in decreasing values of  $l(k;\theta)$

4. MLE of the failure vector (RNUE is the estimate in the program).

-113-



Block 5: Simulation and Output

-114-

For the bar graph output:

Option 1 (IOP=1) - no ploting of bar graph.

Option 2 (IOP=2) - plot  $L(k;\theta)$ 's for all detectors in simulation

if any detector detects a failure.

Option 3 (IOP=3) - plot  $\ell(k;\theta)$ 's for all detectors in bank at all

times.

;

10.00

.

7

\$

રહેલે [સુક્રાયુટ્ટી સાથે કિંગ્ય ફેંગ્ય હોય બ્લાન હવાન કાર્યત્ર છે. પણ 1 મહલ્લા પ્રાથમિક થયા 1 મહલ્લા છ

 For a detector that does not signal a failure (no  $\ell(k;\theta)$  exceeds threshold), the bar graph of  $\ell(k;\theta)$  is scaled as the threshold equivalent to full scale. Otherwise, the largest  $\ell(k;\theta)$  is the full scale value.

I.4 Words of Caution

MDSP manipulates a large number of arrays. Hence, much attention should be paid to the dimensioning of arrays to avoid painful error such as writing over onto other arrays. Rules and advices may be found in the comments in the code.

Many of the matrix manipulations in the program employ subroutines developed at the Electronic Systems Laboratory (ESL), M.I.T. (e.g. MATIO, MMUL, MAT4, etc). The ESL has also developed discretization and Kalman filter gain computation packages which were used in obtaining the system and filter matrices of the second order F-8 in our simulation studies. MDSP is compatible with the above packages.

The subroutine, GAUSS, used by MDSP to generate random numbers is a subroutine from the IBM scientific package.

-115-

## II. Flexibility for further Modules

:-:-

Ξ

្រុំ នៅក្នុងស្នាំ នៅក្នុងស្នាំស្រីស្រីសំណីសម្ព័រ នៅលើក្រុម នៅក្នុងស្នាំ សំពាន់ នៃស្នឹននៅនេះ នៅស្នាំ សំពីស្រីសំណីសម័ន្ទ នៅលើកំព័រមិនសំនៅកំព័រ

The block structure of the program has no complicated inter-block interactions. This facilitates the additions of further modules as new blocks. The lack of intertaining logic in MDSP (except in Block 5 where the d'( $k; \theta$ ) vector are generated and where detector decisions are made; but both of these processes are self-contained units) makes the addition of sub-blocks simple.

Presently the addition of simplified GLR detectors to MDSP is being considered. Computation of the two probabilities,  $P_D$  and  $P_F$  of the detectors and simulation of multiple failures are examples of possible additions and expansions of MDSP. Furthermore, MDSP may be easily modified to accept residuals of the Kalman filter from an external source, making it possible to be used in conjunction with, for instance, a non linear simulation.

-116-

VII. Future Work

Based on the results outlined in this report, we plan to consider the following issues.

Task #1: Cross-Detection and Wrong-Times Probability Calculations. We plan to apply the techniques outlined in Section II to the simplified F-8 model.

Task #2: Measure of Failure Mode Indistinguishability. Motivated by the cross detection problem, we are planning to develop a measure of mode indistinguishability. Our initial attempts will involve the use of inner products of failure signatures and the definition of "orthogonal failure modes." We hope to develop a Gram-Schmidt Orthonormalization Procedure for a set of failure modes. The idea here is to determine a transformed set of signatures so that only one likelihood ratio will become large when any particular failure occurs. This will greatly simplify the resulting detector decision logic. In addition, this study can lead to the determination of a small set of "universal signatures," which can be used to detect a wide variety of failure, the idea being to use these signatures to detect failures with subsequent isolation provided by correlating residuals with a larger set of signatures.

Task #3: Sequential Probabilities for SGLR. In Sections II and IV, we noted that if one utilized the "window" approach to GLR, one would need to calculate joint probabilities that likelihood ratios  $l(k;\theta)$  exceed some

" 🐐

-117-

threshold. In addition, at the end of Section IV, we proposed a possible detection scheme that requires K likelihood ratios to exceed a threshold. By doing this, we may reduce false alarm problems substantially. Recall that in Section V we observed that false alarms occurred in bursts -- i.e. one bad data point would successively trigger off a number of alarms. The approach outlined in Section IV would help minimize this problem. We also note that, as described in Section V, the shape of the set of  $l(k;\theta)$  after a failure is quite distinctive and is much less so when false alarms occur. Thus, it is clear that a study of the correlation behavior of the LR's would be extremely useful in allowing one to utilize the GLR data in an optimum manner. However, as mentioned in Section II, the LR's in the full GLR case are noncentral  $\chi^2$  variables, and the study of correlated variables of this type is quite difficult. Thus, we propose to study these questions for SGLR, where all of the variables are Gaussian. We feel that SGLR is "close enough" to GLR so that our analysis will be valid (in general terms) for full GLR as well. Thus, we plan to examine the sequential correlation of SGLR's and to use this information in the development of efficient detection rules. In addition, one of our first uses of this information will be in the calculation of delay time in detection -- i.e. the calculation of

**Prob** 
$$\left\{ \begin{array}{l} l(k;\theta) > \epsilon \\ v \text{ occurred at time } \theta \end{array} \right\}$$

=

We feel that this task will provide some of the most useful tools for future development of the GLR technique.

-118-

Task #4: Cross Detection Simulation Studies. We plan to run a series of simulation runs using the simplified F-8 model in order to study the qualitative properties of GLR cross detection. We hope that these results, together with the indistinguishability results from Task #2 and the analytical tool of Task #3 will allow us to develop a method for minimizing the cross detection effect.

Task #5: Sensitivity Studies and Simulations. One of the key unanswered questions is the robustness of GLR to model errors. We plan to run a series of simulations in which the GLR is designed based on the linearized F-8 dynamics at one flight condition, while the plane is actually at a second condition.

Task #6: Simulations of SGLR. It has been conjectured that SGLR, while not as accurate a detector as GLR, might be far less sensitive to parameter errors. We plan to implement a set of SGLR simulation routines and to run a series of simulations in order to study the utility of this method. Task #7: Development of Several Pedagogical Examples. The GLR approach as we have been developing it has a number of aspects that are somewhat subtle. We feel that in order to clarify these issues, it would be nice to have several very simple test problems that make the various points relatively easy to observe. We have already done this once (in Section V) and will attempt to find several other test problems that illustrate key points.

-119-

and the production of the and the production of the second s

.

- NI LA LA MOON

and the second product of the second s

÷.

o .

80.343

There are clearly a number of other issues that must be considered in this study; however, the above represent those tasks we plan to complete during the present grant period. A full set of additional tasks will be spelled out in the proposal for continuation of the grant.

ماجا المحمد والمحاكمة فالمعام والمعاول المحاط المحمد والمحافظ

## REFERENCES

 W.H. Lee, K.-P. Dunn, M. Athans, "Reduced State Designs for the F-8 Aircraft Dynamics," Interim Report 9 for NASA Langley Grant NSG-1018, M.I.T. Electronic Systems Lab., Cambridge, Mass., Oct. 15, 1975.

- E. Chow, K.-P. Dunn, and A.S. Willsky, "Remearch Status Report to NASA Langley Research Center: A Dual-Mode Generalized Likelihood Ratio Approach to Self-Reorganizing Digital Flight Control System Design," M.I.T. Electronic Systems Laboratory, Cambridge, Mass., April 1975.
- 3. A.S. Willsky, "A Survey of Deisgn Methods for Failure Detection in Dynamic Systems," M.I.T. -NASA/Ames Workshop on System Reliability Issues for Future Aircraft," M.I.T., Cambridge, Mass., August 18-20, 1975; also submitted to <u>Automatica</u>.

----

72

1,012

## Appendix

1. Algorithms in MDSP

All the algorithms used in the MDSP are straighforward except the generation of  $d(k;\theta)$  and  $\ell(k;\theta)$  in block 5. The computation of  $d(k;\theta)$  is performed in the subroutines GENDLR called in block 5 according to the formulas:

(1) 
$$d(k+1;\theta) = d(k;\theta) + G'(k+1-\theta)V^{-1}Y(k+1)$$
  
(2)  $\ell(k+1;\theta) = d'(k+1;\theta)C^{-1}(k+1;\theta)d(k+1;\theta)$ 

 $d(k;\theta)$  may be expressed alternately as:

(3) 
$$d(k_{j}\theta) = \sum_{j=\theta}^{K} G^{i}(j-\theta)v^{-1}\gamma(j)$$

For a feasible realization of the GLR detection scheme, a finite size window characterized by  $k-M \le \theta \le k$ -N is used. The computation of  $d(k;\theta)$ requires  $k-\theta+1$  data points and in particular, d(k;k-M) requires M+1 data points from k-M to k. Consequently, the actual window  $k-M \le \theta \le N$  implies an affective window  $k-M \le \theta \le k$  within which all the d's have to be stored to utilize formula (1). (Alternatively, M+1  $\gamma$ 's would have to be stored to use formula (3)).

There are several ways to store the d's in the effective window to conserve storage. The scheme employed in MDSP is as follows. Consider the section of DTS (storage of d's for the whole detector bank) for the  $I^{th}$  detector in the bank:



At time k+1, d(k;k-M+1) through d(k;k) may be incremented to form the M d's for the effective window at k+1 via the recursive formula (1). However, d(k;k-M) is not used since its incrementation gives d(k+1;k-M) indicating an observation point outside the effective window into the past and hence a point outside the actual window. But this storage space is now used for d(k+1;k+1), a new point in the effective window acquired through the sliding of the window. Continuing this "replacement" process, the same section of DTS at various times contains:

JD



-123-

: ::

イモーション せて

÷7.

Effectively we have treated this section of storage as "closed-end" or "circular" storage.



To be able to tell where the ends of the effective window are, we defined another offset array JS. [JD(I) + JS(I)] points to the farthest point into the past in the effective window. Hence JS(I) is an offset from the pointer JD(I). Other points in the window may be easily located treating the storage section as a "circular" storage.

As each detector is activated, there is a transient during which the effective window is not filled i.e. there is an m such that  $0 \le m \le M$  and  $\theta = k - M \le k_0$ , the starting time. Hence, during the transient, the effective windows is smaller than it is later. As time progresses, the effective window grows until it reaches its full size (M+1). Therefore, we define an array JM to record the sizes of the effective windows of the detectors in the bank from the starting time on. The effect of JS and JM on the storage section may be best visualized via a diagram. For simplicity, we let M=3.

-124-

-125-

: 1



|       | DTS             | . 1                       |                             | r 1      | 1                            |
|-------|-----------------|---------------------------|-----------------------------|----------|------------------------------|
| JD(I) | 4' (6,5)        | d'(7,5)                   | d' (8,5)                    | d' (9,9) | <u>d*(10,9)</u>              |
|       | 4' (6,6)        | d' (7,6)                  | <u>d' (8,6)</u>             | d* (9,6) | $\frac{d'(10,10)}{d'(10,7)}$ |
|       | <u>a' (6,3)</u> | $\frac{a'(7,7)}{a'(7,4)}$ | <u>d' (8,7)</u><br>d' (8,8) | d' (9,8) | d' (10,8)                    |
|       | a. (0,4)        |                           |                             |          |                              |
| timo  | 6               | 7                         | 8                           | 9        | 10                           |

Note that JM(I) is set to M for k $\geq$ M+1. After the transient (M+1 time steps), JS(I) is reset to zero every M+1 time steps simulating the "circular" effect of the storage.

For each new set of d's, a set of  $\ell$ 's is computed for the actual window (i.e. k-M< $\theta$ <k-N) and stored in the GLRS array in the following manner:

र्जन्त्र स्वकृत्र जन्मन में जन्मनी हुने दिलीक किस्तित किसिक्त करें होते. 'ह ने होते' 'हे हिन्दी में होता 'हे ह

.



initia secondaria. Initia secondaria

Except the updating of JS and JM as time progresses, the process described in this section is carried out by the subroutine GENDLR.

PRECEDING PAGE BLANK NOT FILMED

<u>-127-</u>

3