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I. Introduction

In this report we summarize the results of the research efforts

" under Grant NSG-1112 from March 15, 1975 through November 130, 1975, The

personnel involved in this project during this period were Prof. A.S. Willsky,

pr. S. B. Gershwin, Mr. R. Bueno, and Mr. E. Chow., Mr. Bueno and Mr. Chow
are graduate students working towards”S.M. degree - and thcses based on
" ¢h-.1r work on this project will he forthcoming (February 1965 for Chow .
and September 1976 for Bueno) . |
Before we outline the report, we first describe several‘qther
activities relateqwto this grant. As we ser it, the purpose of this
research effort.ié to perform a fundamental study of the problem of failure
detection and reliable system design for digital aircraft control systems.
The research efforts described herein represents a major step in this study;
. and at the end of this report we will outline several of the ste;r which.
_ will be examined next. 1In addition to this work, Prof. Willsky undertook
a detailed survey of failure detection methods, and this effort culminated
in the survey paper [3], which is included as Appendix A. Also, during this

time period, close contact was established with staff at the Charles Stark

Draper Laboratory (in particular Mr. J. C. Deckert, Dr. J. J. Deyst, I,

and Dr. M, Desai) working on NASA Langley Contract rAsl-13914 Specifically,

Prof. Willsky has been 1nvolved on a regular basis as a consultaut, and Mr.

E. Chow will join the CSDL research staff on this project on a full-time
basis beginning in mid-January. This project, which is of a more applied

nature than Grant NSG-1112, has complemented the research at the Elect:ronic

t-bed for

Systems Laboratory quite well. The CsDL program has provided a tes
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many of the concepts developed at ESL; it has also suggested several new,

fundamental issues which will be explored at ESL; the 7SL project has pro-

vided a 1earning experience for graduat: students who can then fit into the -

~ ongoing CSDL project; and, finally, the results of the CSpL study will

provide several important pieces in our overall effort to develop a fault-
tolerant control system design methodology. We feel that the present

cooperative arrangement between ESL and CSDL provides an ideal balance for

- raesearch and development”in this area.

As. hackground for the work described in this report, we refer the
reader to the earller research report (2], We review some ol the notation

and the problem formulation. We have concentrated our attention on four

" pasic "failure modes":

1. State step
x(k + 1) = o(k +1, KIx(k) + w(k) + 0 k+1, e

z(k) = H(k)x(k) + vi(k)

2. State jump
x(k + 1) = 6k + 1, KIx(k) + wik) + § ) oV

z(k) = H(k)x(k) + vik)

3, Sensor step
x(k+1) = O(k+1, k)x(k) + w(k)

z(k) = H(K)x(k) + v(k) + ok'ev

4, VSenscr jump
x(k +1) = Mk + 1. k) x(k) + wi(k)

gik) = H(K)x(k) + vik) + B, 8°
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We have proposed a number of other failure models, but have concentrated
on these four, since they provid: a simple and analytically tractable
framework for this basic study and also since i is felt that detecéors
based on these models should be able to detect otherlfailures (such as
"off failures").

Recall that the GLR approach involves the implementation of a‘
Kalman filter based on a "no failure" assumption. 1In this case the filter
innovations take the form

Y(k) = G, (ks BV + Y(k)

where ; is the residual if there is no failure, v is the failure magnitude,
0 the failure time, and i the fai;ure mode. The precomputable matrix

Gi(k; é) is called the failure signatufe and characterizes the way in which
a failure of type i propagates through the system and filter. The GLR
system examines the residuals, determines if there is a failure, and then
estimates the time and magnitude of the failure, as well as deciding on -
failure type. In order to keep the detector computationally tractable,

we search over a "window of residuals" -- i.e. we restrict our estimate

IR of 0 to lie in the range
k=M<B<k=N

23 A slightly simplified version of GLR is simplified GLR (SGLR) in which one

TR

hypothesizes a value for v, thus avoiding the problem of estimation of v.

The utility of this approach is that it is quite similar in performance

S B

: characteristics to GLR, it requires less compvtation, and it is more readily
i " analyzed than full GLR (see the next section).

In the previous repoit, we developed the basic GLK and SGLR equations

Do i o SR e
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for all four failure modes, and described the first steps in developing

a GLR computer packaqge., In this report we describe progress along

éé‘ , several lines. Section II deals with several analytical tc~'s that have
%;- been and arc being developed in order to gain insigh% into the workings
of GLR and also to provide some tools for the inevitable design tradgoff
"studies., We consider the usual probabilities of false alarm and correct
detection, but we also define and consider several other probabilities of

interest. One of these is called cross detection probabiligx, and it

represents a measure.of the indistinguishability of different failure

modes. The other is wrong tiue detection (i.e. detecting a failure at

_the incorrect time). This is a useful piece of information in evaluating
the overall performance of GLR, since, if some of the w;ong time probabilities
are large, one can improve overall detector performance by examining a o e o
‘window of values for 8. A number of issues involving these performance
_measures are discussed in Section II.
| In Section III we describe the test problem used in our studies. We

‘have used a second order, simplified nodel of the longitudinal dynamics of
‘the F=-8 aircraft. In Section IV we discuss the application of the perform=-
ance tools of Section II to the test problem, and in Section V we describe
£hé results of a set of simulation runs. We have attempted in this latter
section to describe the qualitative behavior of detector performance.

Section VI contains a description of the GLR computer. package that has been

developed, The present package allows one to perform a variety of analytical .
- tests (Sec. II) and to simulate system performance. One can run several

types of detectors simultaneously, thus allowing a study of cross-detection

o ; behavior. In addition, one can design detr~tors based on one system model

o
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and can simulate its perfcrmance when the real systew is different., This
option will allow us to study the robustness of the detector.

We note that the presentation given here is somewhat unpolished as
it represents a status and not a final report. Thus, there are numerous

looge ends and open questions throughout the report. We have collected

these in Section VII in which we describe the next tasks to be undertaken. .. .

cally, in the theses of Chow and Bueno)..

 More f£inished descriptions of our research will be forthcoming (specifi- =

PO DU




TR

- ?!‘!.‘IA{, ' :

R l;;

———

I1. Performance :.asures and probability computations

In this section, we report our efforts in studying the performance
of the GLR technique. We define the probabilities of correct de*ection,

false alarm, cross detection and wrong time as some mcasures of performance.

Since these quantities provide incomplete evaluation of the detection '

scheme, their significance and limitations are discussed. It is shown

that these probabilities requirc the evaluation of chi squared and gaussian
integrals for the full GLR and simplified GLR respectivel,. Computationai
algorithms for such probabilities are presented. s an example of applying
these bérformance meaéures, probabilities of correct detections and false
alarms for the second order model of the PF-8 aircraft are considered in
Section 1V, Such analytiC4} resu. -3 Wi}l.be.verifiedﬂ’v the”siﬁﬁiation
studies described in a later section (Section V).

The prci-abilities of correct detection (PD), false alarm (PF)' cross

-detection (Pi/j) and wrong time (Pe/e ) are defined as follows.

t .

P_ = Prob (2(k; 0) >ela =8, v, vt = 6,)

D
Pp'= Prob (L(k; 0) > ela #0,B8=0,v=0)
®iy - é;ob (L0; 0) >ela=1,B=3, a# B, v, 6 =0

Pose, = Prob (R(ks ©) > elé =B, v, 0748)

where 0 denotes the failure mode ti.at the GLR detector is based upon and

‘B denotes the type of failure that actually occurs. Both a and B may take

“the values 1, 2, 3, or 4 renresenting the four modes of failures. The value

of O for B is used for the case that no failure occurs. Also, et is the
true time of failure; 0 is the hypothesized time of faijlure; v is the true

failure vector; and € is the threshold.

L
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There are many aspects to the evaluation of a detection scheme and
a single index is not sufficient to indicate the quality of the scheme.
The above probabilities are some convenient quantities defined in order to
study some aspects of the GLR detector performance. PD is the confidence
that one would have in the detector since it is the probability of detecting
a failure when a failure actually occurred. PF measures the negative
quality of the detector as it is the probability that a failure is signaled
while no failure has occurred. Both Pi/j and Pe/at are more subtle measures
of perfc.mance, since they pertain to the ability of the detector to dis-
tinguish f.ilures of different types and different failure times respec~
tively.

Note that these probabilities are defined at each point in time
assuming'no knowledge of the %(k; 0) at other times. It is cie#rbthat
2(k; 8) and R(3; ¢) are correlated whenever the intervals (8, k] and (¢, 3l
overlap. Since the GLR detector operates over ranges of values of k and 6

(both as real time and as hypothesized failure time vary), a better set

of performance measures might be “"interval" versions of the probabilities

defined earlier. For example, one might be interested in determining
probabilities such as

p* = Prob (z(k.e) >cla=8, v, 8=0, 430 <€ 023 < k)
This is the probability that we will first detect the failure at time k

and is extremely useful in evaluating delay time in detection.

The modified probabilities require the joint densities of Z(k; )
and 2(§; ¢) which are difficult to compute in the full GLR case since

correlated noncentral Chi squared (xz) random variahles are involvad.
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However, in the simplified GLR case, (k3 0) and Y(3; ¢) arevjointly dis-
tributed gaussian random variables, and the study of the modified probabil~-
ities is easier in this case and hopefully will lead to a better under-
standing of the full GLR. This study will e included in the next report.
For the computation of the probabilities defined at the beginning
of this section, the density functions of 2(k; 0) under the stated condi-
tions are required. It is shown in II.1 that the full GLR is a noncentral
xz.random va:iable,while the simplified GLR is a gaussian random variable
(11.2). The computation of noncentral x2 probabilities is considered in
Ii.3. The noncentrality parameter:(éz) of the )(2 density and the mean of
the guassian density of GLR éystems reflect the effect of the failures

on the 2(k; 6). 1In Il.4, these parameters are examined under the condition

of correct detection.

11.1 Full GLR probability density

Consider a detector that hypothesizes a type i failure with failure
time = O while an actual failure v of type J vccurred at et. The actual

residuals and GLR outputs then are given by

Yl = Y(k) + Gy (ks 8,)V

k

d(k; 6) = z: Gi (m; B)V-l(m)v(m)
m=0

k
=X o m &) vim (Y + G (m 6]
m=0

Ly 8) = @' (ks 8) €, )" (k1 8/8)d (ks ©)

where
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Gy

unbiased, white part of the residual, and

k .
' é ' -1 »
gi/i(k' 8/0) 2;% Gi(mr 8)V " (m) G, (ms 0)

. Note that ci/i(k’ 0/8) = C(k; 0) of a type i detector.

(k; 9) is the G matrix corresponding to a type } failure, ;(k) is the

Since v’l(m) is a positive definite symmetrix matrix, Ci/i(k’ 6/0)

is positive semi~-definite symmetric matrix. Then there exist an ortho-

normal matrix T such that

Ai/i(k: 0/0) = T c i/i (k: 6/6)'1'

where Ai/i(k’ 6/0) is a diagonal matrix and the diagonal elements

eigenvalues Al' kz coe An of Ci/i(k' ©0/6) (n is the dimension of

Ci/i(ks 6/60 )). Assuming C-i/i (k; 6/0) exists, define

Riks ©) = {8 ks e)-r}i ~1¢ ;ji(k e/e)r}{r Yagks @)}

4 v' (ks 0) Ai/i (k3 91) v (k3 02)

Then vik; 6) is a guassian random vector:

viky &) =1 D, Gl (m OV (m [¥(m) + G m 0,)V]
=0

k

Elvik; )} = 7' E G (m;6)V (m)Gj(m 8,)v
m=0

A
=17 Ci/j(k’ 6/9t)v

E{vik; 0)v'(kx; 0)}
= T'cili(k,ela)'r + T'Cilj(kxe/e )w ci/j

Ayjy (ki 8/8) + (BLv(xi6) 1) (ECv 010011

are the

(k;ﬁ/@t)T

PR e

B .
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Hence Ai/i(k' 0/0) is the covariance of v(k; 0). 5Since Ai/i(k' 0/¢)
is diagonal, clements of v(kj 0) are indcpendent of onn another. Lk; @)

can be expressed as the summation:

D vi (x; 6)
,'(k’ 0) = —T—-—
m=1 m

where Vm(ks 0) is the mth component of v(k; 0). Then each term in the

above summation is the square of a gaussian randem variable with unit

-2 .
v 2 (k; 6)
~ variance and mean of 'EL'jr""‘ (vm(k; 0) is the mean of v (ks o).
m

Therefore, L(k; 0) is a noncentral x2 random variable with n degrees of

freedom. The noncentrality parameter (62) can be shown to be

i/i

o -1
= vy, ki 8/0) €y (ks 6/6) cilj(k;Ae/et)v

62 = (elvik; ®N'ATY . (ks 6/0) (Elviks 0D

Note that no assumption is made on i, j, 6 and Bt. The derivation

as special cases
t

as well as others which are not considered presertly. In any event,

includes the conditions defining PD. pF'-pi/j and PG/Q

" v
2(k; 0) is a noncentral X~ random variable with n degrees of freedom and
62 dependent on the conditions hypothesized. Specializing to the four
cases of current interest, we have,

(1) PD: 8= 9t. ie3j

8=y k30/0)V
‘- ) ci/i( 16/0)V
(2) PFs i=23,ve=0

§" =0

“f{k; ©) becomes a central X2 random variable




~1l=

(y p " i d, 0=0

i/ t
2 = (] [} 7 sl .
I\ v Ci/j (k; 6/0) Ci/i (k3 O)Ci/j(k; 0/0)
(4) Po/etz i=3 0¢ Ot

Note that the different relationships among 0, Bt, k have different

physical meanings, for instance,

<
k<0 <0
k <9 5_et not meaningful
0, <k<8
U<k« et, - false alarm
6, <8<k )

wrong time
<6, <k
t—
then

2 ')

8 =v Ci/i(k: elet)ci/i(k’ e/e)ci/i(k,e/et)v

The probabilities (PD, PF

the density functions of L(k; 6) from £ = € to & = +,

R Pi/j' Pe/et) are simply the integral of

11,2 Simglified GLR probability density

Consider a simplified GLR (SGLR) detector set to detect a failure
Yo of type i with failing time = @ while a true failuvre v of type j
actually occurrec at 0y

YU = Y(K) + Gy (ke 0V

(U
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k
flky 0) = ~ [2Y(m) ~ G, (m 3)V01°V.1(m)ﬂi(m; v,
kK
- 2 v m)G, (my 0) v
m=f o
-k
[y =1
+ 2 §9 vv c;j(m, et)v (m)Gi(m; 0) v,

k
- v; }E: G;(ma G)V’I(m)ci(m; v
m=0

k
v e -] ~
- % 2 v 6} tm OV m)Y(m)

+ 2 vo ci (k; e/et)v - vo (k; 9/9)\)°

/3 Ci/i

Since ;(m) are zero mean, independent gaussian random vectors, £(k; €)

is a gaussian random variable with mean (L) and variance (02):

T=eltt; 00} = 2v) ¢, (ki 0/8,)v = v, C (ks 8/8)V

/3

o? = E{{R{k) 8) = D12}

k
=4V Eﬁ G} (ms G)V.l(m)Gi(m; 0 v

]
=4V Cyyylhr 8 Y,

Note that the variance is the same for all cases whereas the mean
varies. For the four cases of interest:

(1) Pyt i=3,0-= Ot, V=V

Tav c,, (ks 6/0)v

i/i
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(2) PF: i=3 v=0

-E E \’;Ci/i(k;e/e’\’o

(3) P.sz i#3,vs= vo, ‘e = et
T= 2\’;‘:1/3‘ (E;Q/e)‘.' . y;pi/i(k;e/e)vo

@ Bg s i=3r V= Vo

< <
0 et k or

Oy <0k

T = ZVACi/i(k:B/Ot)v - v;ci/i(k; 8/8)v_

Another probability of cross detection Pi/i(v) may be defined for.

the simplified GLR.

Pi/i(v)z i=3, 0= Ot. v # Vo

T = v;ci/i(k;e/e) f2v - v )

~simplified GLR is polarized to detect a.special failure direction. Pi/i(v)

provides a measure of the ability of simplified GLR to detect othexr

failure directions than the hypothesized one»(vo); This quantity can alsc .

be used as a measure of the distinguishability of different failure
divections for a simplified GLR detector. Given the basic similarity

of the GLR and SGLR algorithms, these calculations should shed light on

the pro,erties of full GLR.

The desired probabilities are easily obtained by integrating

gaussian distributions.

P

e e e e - b
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11.3 Thelz random variable

A. The central )(2 random variable u with n deqgrees of freedom is
the sum of squares of n independent, Zero mean, unit variance gaussian

random variables or more precisely,

when x, ~ N(O, 1) .

i

“and z-:{xixj}_ =0, if# 3.

Then the density function of u is:

. n_,
fz(u) = -—n7-2—1—r— e..u/z u2 a>o0
2 T'(z n)
p 3
0 . ugo

where I'(+) is the gamma function.
‘ There is a FORTRAN subroutine (COTR) in the IEM Scientific Sub-
routine Package that can be readily used to compute the integral of the
above vdenétty. i.e, the qu,éntity o
" €
P (u<e)= f“(u)du=f £ (u)du
u - u
=00 0
Then the false alarm probability of a detector set to detect a

failure in an n-dimensional system is

n
= - <
PF 1 Pu(u s €).

B. The noncentral )(2 random variabiec w with n degrees of freedom
is the sum of squares of n 1ndependent.'nonzero mean, unit variance

gaussian random variables with the noncentrality parameter defined as

1
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52 - Z u:*.(xi)l2
i=1 N

with 6% - 0, w is a central xz. The density for w is

.%(szm) n-2 (62w T34p)

T

o«
. !
§=0 (23)1 T(3+5 n)

Then

w>0

°° 1
PIRTRE z ) r4 2
)T w ~ R T
w, 6 =0 2V 1@ 29)1 TG n+d)
1 © n,. 1 1 1 1 .1
=6 sHi-l Sw (3-1+ 3 =243 ... 3 I‘(-i-)
ae’ 2 (633 2 2

W e
j=0 272 (231 T T(3%gn)

L 273 (23-1) (23-3) 0. () QTR

=

2 1
22 (29 (23-1) (23-2) (23-3) .. (3) (2) (OT T (347 m)

L o
.}
-e-z- : (Gz)j 3

® 1
1
3=0 y12M2 + 4 I‘(.j% n)

N_I?

!.!lll‘
g
a .
[ ]
-

P L w<e) =e — P w e

e ol
!-” 'v]s_iv, Y

(u < €) may be computed using the IBM subroutine CDTR. Then
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» 2(& £ €) is calculated hyvperforminq the summation., The infinite

w,6’

sequence in the expression of P" 2(w < €) can be proved to be convergent,
w,d

For wide ranges of 62 and €, the limit of the series is effectively

attained by summing less than thirty terms. We also note **at

1im P" , w<eE) =1 for all 8 >0
€+ w06 '
m P , wSe)=0. 0<ec<w
62 5> 00 w'G
, 1
Hence, P _, P, ,. and P are increasing functions of 62 and approach 1 N
' "i/3 6/6, ' |
as 62 goes to ® for any finite value of €, the threshold (s¢: Figure 2.1). -

1I.4 A study of the probability of correct detection (PD)

Recall for full GLR,
' P, = Prob(L(k; 8)> ela=g=1, 0=28.)
Under this condition, %(k; 6) is a noncentral x2 random variable with
~ noncentrality parameter 8.

2 ;
& =V cj_/i (k; 6/6)v »

By the definition _

Ci/i(k' 6/6) 4 C(k; 0) of the type i detector

Then 3
62 = V' Cuap O)V
For simplified GLR,

P, = Prob (L(k; 8 > ela=B=14,0 =06, ,v=yv) .

(k) 0) is then a gaussian random variable with mean (%) and variance (02). ;

il

IR



 PROBABILITY (2 DIMENSIONAL FAILURES)

&

o
>

0.2

.40 60 80 Aﬁ 14.0
abili ‘r,TMﬁ’ﬁ"“Hﬁl n noncontral x variables.

SR . ]




.

o =

18-

2= v Clk; OV
2

=47
In both cases, the PD's are increasing functions of”62 and % which
evolve with time (k). An understanding of the evolution of the_PD's

requires the evolution of 62 and T which in trun require the behavior of
Cc(k; 6) as a function of time.

In the fullowinq,‘we present an analysis of the behavior of C(k; 6)
for time invariant.sjutems.

In a time invariant system and ste dy-state Kalman filter, C(k; ©)

becomes dependent o¢.. the difference between the true failing time and

- observation time (k- 0). For convenience, we let r = k - 6. The four

different types of dectector are considered separately.

1. State Jump Detector

r
Fr) = 2, 053 xu o
j=0

where O = [1-KH]®; K is the steady state Kalman gain, ¢ is the system

‘.matrix and H is'the observation matrix. Both the system and the filter

are assumed to be stable. Then the magnitude of the eigenvalues of ¢

and O is strictly less than 1, i.e.

@] <1 i=1,2, caan

@] <1 1i=1,2, ...n

where n is the dimension of & and ©. Consider the norm ||*|| of a nxm

matrix'a,

|1al| = max (x'a'ax) /2

|| =2

;
U S

LAt £ ot




where x is a m-vector,

For a srquare matrix A with all eigenvalues of maqnitudes less than i,

it can be shown that ||a|| < 1.

For a jump in the state,

r
Py = 2 OF) e

jaO - ‘ ‘ e

r r
e || < j):(.) ||9r-jm¢jli,<_"12||mll of = ||ku||(x+2) p°
. -~ & Ly e &

where p = max {|]¢|], |lol1}
since p <1, there exist aa >0 such that p = e-a. Then

Hretl < Hrall ) e

“The RHS goes to zexo as r * %, Therefore

1im F(x) =0
r > ®

siﬁiiﬁrly, for G(r),
Hete) || = ||ute” ;Aéf(rel)]ll o | -
< Il tHel (T + el [ir-n |1 S
il S

Hence G(r) also approaches zexo as ;’+ m;' Now consider C(r). Define

sctese) Qo -cts)  .res
S
2 Y e vew
jrr+l

1

- E j o bR ',,A-.'__--u’%imk;; T
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ha

e, "

=20
8
[lactz, || < v 12 0+ lxai] 30
=r+l
< 11 Hal? tten)0” + |lxal] (s=r) + 07}

As r + @, the terms in the bracket approach 0, Hence

1im  |Jac(x,s)|| =0 r<s

This shows the {c(1), c(2), ... C(r) ..+} is a Cauchy sequence 5nd'hence_

converges to afinite constant matrix. Noting that C has the ,interpretation‘

as the information matzrix associated with estimating v, we see that there

is a finite amount of information concerning Vv in the residuals Yy (this is

cléér since both the system and filter are stable and the failure is a
transient effec£ ~= i,e., a jump). By determinirg the rate of convergence
of C(r), we can choose a waiting time r* such that there is essentially

no information in y(k) concerning failures at time 6, where k - 8 > r*,

2. Step in the state

5 5 0 et

= = |
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- ?_: o x tx - i - 0
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As r + @, the first term becomes (I - ol'lxnli -»01-1 and the second goes
to 0 following the reasoninq for the state jump care. (I - 01-1 and [I - ¢l-1

exist because |Ai(0)| <1, IAi(Q)l <1 fori=1, 2, «sene

G(r) = HI ; ¢*™3 - or(r-1))

- ur - o1 - 017t - HOF(r-1)

As r + ®, the first term becomes H(I ¢]-1 and the second, HO[I-GI-IKH[I-Ql-l.
llence G(r) reaches a constant as r + ®,. G'(j)v-lc(j) is positive semi=~ |
definite and attains a steady state value G'(w)v-lG(“). Thus it is possible
that some of the eigenvalues of Cc(r) grow as r increases indicating that

some failure vectors”w .1 cause a growing,dz. Therefore, an actual failure
vector of this nature will cause PD to approach 1 as the waiting time (xr)
increases. By examining the eigenvectors and eigenvalues of C, we can

determine those step failures that can be detected with arbitrarily high

probability if we are willing to wait long enough.

3, Jump in sensor

lim F(r) =1im ©ox=0

r &+ ® r > @®

lim G(r) = lim ~HOF (x-1) = 0

r + ® r >+ ®
Hence C(r) for sensor jump failures behaves much like that of state jump

failure,
4, Step in sensor

1m  Flr) = lim ok =11 -0

r <+ ® r &+ ® =
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1lim G(r) = lim (I = HOF(z=1))

r » ® r >+ o

=1~ HOT - 012K

Hence C(r) for sensor step failure behaves like that of state step failures.
In general, C(r) is a sum of positive semi-definite matrices and

~rnsequently may be positive definite or semi-definie matrix. If c(r)

~is positive semi~definite, then there are failure vectors such that the

re;ulting 62 is zero, implying the failure direction cannot be seen by the

detector and that certain failure directions are indistinguishable. Intui-
tively, one would suspect the cause for this is that this failure direction
'is not observable. This is true in fact. ia the following, conditions

for the positive definiteness of c(r) of different detectors are derived.

C(r) may be written as

clr) = [G'(O) DG ) D .. G(r)] v-l (o) ]
® LY [ ] . . o [N X ]

. G(1)

-1 .:.

v .

LG(!’

4 6y v2 Gix)

Since v ! > 0, vl > 0. From the theory of linear algebra, C(r! is
positive definite if the null space of G(r) is {0}. we examine G(r) for

the four cases separately.

1. Jump in State

G(z) = X I s ] éalm B(r)
=[1dK I 0 Ho
«HOOK =HOK ) 4 H@z
Lo : .
 {emgoFelx <HOOT2K ... 1 Lno’
. = » ’ . -

I : .
[ U §
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Al(r) is a lower trianqular matrix with identiy blocks in the diagonal. Al(t)

is of full rank, and the null space of G(r) is the null space of B(r). Hence

if the null space of B(r) is {0}, C(r) is positive definite. This condition

on - . .o exactly the observability condition of the esystem in r steps.

2. Step in State

p—

G(r) = 1
- I=HOK
L
1-H® Y Ok
3=0
b !

-6 3 Ok
3=0

h

& a0 (o)

Az(r) is of full rank, C(r) is

in r steps.

3, Jump in sensor

G(0) = G*(0) =T

H
0

I o

I-HOK I H¢2
r=2

00 Y Ok ... I o™
3=0

4 L

positive definite if the system is observable

Hence the null space of G{(r) is always {o}. c(r) is always positive S

definite in this case.

4, Step in sensor

Similar to sensor jump failures,

G(0) =G'(0) = I

n<,
VRN PPN

C(r) is always positive definite in the sensor step case.
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Syatqh ohservabil ity makes a state failure detector sensitive to
all directions of failure byléausing a nonzero 62. sensor fallures are
directly observable and hence 62 for sensor failures is always nonzcro,
52 attains finite steady state values for all jump failures, while for
step failure, some failure dirpetions may cause a constant; steady-state
rate of increase in 62. A finite steady-state 62 gives a limiting value
of PD (< 1); an increasing 62 allows one to choose a PD arbitrarily close
to 1 by waiting long enough.

~_____ _The above analysis also provides guidelines for selecting window
”aizes; For detecting jump failures, the window does not have to be large
since excessive waiting time (large r) does not increase PD after a
certain stage. A long window is appropriate in detecting small step
failures. If the system of concern is not immediately observable, i.e.
the null spﬁce of the B(r) matrix becomes {0} for some r > 0, the detec-
tion test shculd not be performed until the system at 6 becomes observable

from k, the present time. That is, in general we will calculate (ks O)

over an interval of the form
k=M :_6 <k-N

where N is chosen by observability considerations, while M is chosen by

the limiting behavior of PD and by computational considerations.
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I1I1I. The Test Problem to he considered - The Two-Dimensional Longitudinal

Dynamlcs of the F-8

I11,1 Inttoductign-

Some simulation results have been obtained on the performance of
the GLR (generalized likelihood ratio) detector for the first four failure
types: junps and steps in the state, and jumps And steps in the sensors.
The detector equations for these failures were implemented with a simula-
tion of a reduced~order (2nd order) F-8 aircraft model for a range of
failure magnitudes and directions in state space.

The purpose in doing this was to get some experience with thg GLR
approach to failure detection. Having some sample performances of the
detectors provides insight in a way that helps formulation of meaningfu;
questions for further research on GLR failure detection.

Section IIl.2 states in general form what the GLR approach to
failure detection is based on. Section 11I.3 describes the second-order
model used in the simulations and gsection III.4 presents the steady state
Kalman filter designed for that model. 1In section III.5 the relevant
equations of the detector are shown and section I1I.6 describes what the

different failures considered are and what they represent or model in a

physical system,

III.2 Generalized Likelihood Ratio Aggroach

Briefly, the GLR approach is as follows. There are two kinds of

hypotneses:

Hos no failure has occurred

Hia failure of type i has occurred.
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If there - ‘o m failurc modes, there are m+l hypothenes,

The filter and contrnller are designed based on uo. One can then
compute the effect that the various failures considered have on the filter
residuals. We then have:

Mt Y0 = Y(k)
Hyt x() = YUK + G (ks O)Y
where
(k) = 2(k) = H;(klk-l). the residuals from the Kalman filter
v = failure vector
Gi(k’ 9) = failure ‘'signature’ matrix for the effect of a

failure of type i at time 6 on the residuals at

time k. It is precomputable for each i.

Using these“computations we can perform hypothesis tests on the residuals

to .
i) determine if a failure has occurred
i1i) identify the failure type, i

11i) estimate the size of the failure.

Schematically

Failures
v

N

%>

Controller

z X
System Filter--——-———_——a{gia detector |————--3

Measurement Residual i, @, Sl-v

I
i
'. P
:
3




Mgl sdeet 2

27~

II11.3 System Model

The simulations were made using a second order discretized version
of the longitudinal dynamics for the F=-8 aircraft at flight condition 1ll:
altitude = 20,000 £ft., Mach No, = 0.6, cumulus clouds.

The motivation for using this model lies in the need to have a model
of a concrete, physical syétem on which to try out the detectors that
would pggvide some commbn grounds fpr cpmpa:isons. Pu;;hermore the model
provides a compromise in complexity between realism on the one hand and
the amount of computation and ease of interpretation on the other. 1In this
early phase ot research on the GLR approach to failure detection some
results were needed in order to understand its strucﬁuré,;nd performance
characteristics. It was felt that a system of higher order would not
add significantly to our understénding.

our model is derived from the longitudinal dynamics of the F-8 linear-
jzed about flight condition 1l1. That model is 7-dimensional with the

following state variables:

d

Sx® = Ax®) + Bult) + L E(t)

(7x1) Ix7) (Txl)  (7x1) (1x1)  (7x1) (Axd)
X, = qs pitch rate ¢ o « o o o o o s o s o o s 0 s o0 00 (rad./sec)
Xy =V, velocity = V, lv° = Mach no. x speed of sound] . . . (ft/sec)
Xy ™ Q angle of attack = trim value . « ¢ « o ¢ o ¢ s o o o (rad.)
x4=9,pitchattit\lde...-............o..(radc)
Xg © 69,»e1evator deflection = trim value o« « o - o o o ¢ o {rad.)
x6 - Ge ’ commanded elevator angle « o« ¢ v o o o s o s 0 00 (rad.)

c

W, normalized wind disturbance . S A R L (rado)
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o The control variable is:

WIE) = 8 (E) o v o e o v oo s n e oo oo olradi/sec)

 " A, B, and L are constant matrices whose dimensions are indicated.

1 State variables Xg = 6e and Xg = Ge' account for the dynamics of
'Z : c
( , the actuators and X =W is the output of a first-order linear system '

driven by white noise. w(t) modela a wind disturbance with- powér spectral

. i density given by:
£y f__a :
\y-?- (o #w = x,)
‘ 4 + (— w)
. Yo

For flight condition 11 we have:
L= 2'500 ft.
v, = (0.6) (1,036,93 ft/sec) = 622,150 ft/sec

=15 ft/sec (cumulus cloudé)

The five sensor measurements 2z (t) are given by:

z(t) = Ccx(t)  + Ot

(5x1) . (5x7) (7x1) (5x1)

zq, pitch rate measurement

L velocity error measurement

ze, pitch attitude measurement

4 Bg v elevator angle measurement
e T

z‘s =2, 0 normal acceleration measurement
z

R PP SO SO
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g_is a constant (5x7) matrix and 9_13 the vector of measurement noises,

which are white and mutually independent. For more information on the

model.

were:

see [1]}.

Some of the steps taken in the reduction of the order of th: model

= ignoring the 1n§ut dynamics represented by Xg and X 88 they
are not the main variables of interest in an aircraft dynamics
model.

- eliminating Xqy the wind.disturbance,ﬁag,a variable and modelling
its effects on the remaining ones_hy a white noise process,

- selecting tpe variables with highest signal-to-noise rétios
among the observations and 1gno£inq the rest.

- using common sense and engineering intuition to correct and/or

add for any other significant interactions.

The resulting model is a two-dimensional representation of the

dynamics with the new state variables:

X, = q the pitch rate
X, = (angle of attack) = (trim value)

The last step was obtaining the corresponding discrete-time model

in order to simpliiy jmplementation on the digital computer. The dis-

cretizing time step was T = 0,03125 seo (%E-Bec). The result,

x(k+l) = 0 x(k) + Gy, wlk) (1)
(2x2) 12x2)
z(k) = Hx(k) + 6, v @)

(ax2)  (2x2)

Yo
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i where
%? ( T} 0 k#3
S E tg(k) Q(j) =1 ij ¢ ij =

T
- E{ vix) v() )= 1 Sy

[o.eazse -0. 14649]
~  L0.030587 0.97193

The eigenvalues of ¢ are:

A (@) = .977 £3(0.0667). , 1=1,2

- [0.,022596 0.0
Cnx =
g =2 Lo.0043276 0.0002260

"0,008729834 0.0 ] j
—=-  |o.0 0.06 }
. |
H= . . o]
0.0 16.154 |
i

I111.4 Filter

The filter implemented was a steady-state Kalman filter designed for

the two-dimensional model under normal circumstances (hypothesis Ho) s

predictions x(k|k=1) = @ X (k-1|k-1) |

update:  x(k|k) = x(k|k-1) + Ky (k)
with

residuals: y(k) = z(k) = B x (k|k-1)

steady~stats Kalman gain: K = P(k|k=1) g'ry_'l

|
|
|
|
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jnvolved in its implementation. For a more complete derivation see [2}.

time,

where P(k|k-1) = E{[x(0)=x (k|k-1)] [x (k) % (k| k=2)1T}

v = E{y(x) ;1_(k)'r}

s T
= H B(k|k-1)H" + G, Gy
In this example, we havei
-1 -2
7.5351 x 10 4.6257 x 10
1.3527 x 10 1.2748 x 10
-4 -4°
5.6311 x 10 1.0891 x 10 |
Pl k-1) = -4 -
1.0891 x 10 2.2130 x 10

4 1.759328799 x 10~

3

6.393264579 x 10
V= 3

1.759328799 x 10~ 9.374701305 x 10~

Detector

We now take a look at the detector and some of the computation

Consider a particular type of failure, i, and let k be the current

For each 6e{k-M, ..., k-N}, corresponding to times inside a ‘window'

(to which we restrict the GLR to avoid a computation load which would

otherwise grow indefinitely with k), we compute

k
dtks 8) = Ze g, eVl (3) 19
j: . .

which then gives the likelihood ratios

where

Ry 0) = aT(ky 8) C,"M0ky O)dtky B) , O = k=M, k=M¥l, oosy KoN

Jili
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k
clky &) = jz;gf(j; O)f"(j)_c_i(js 0), 6 = k=M, k=M+l, .cc, k=N ;

In our case some of these quantities are time-invariant so gi(k; 0),
vik), gi(k; 6) become gi(k-e)‘. v, Ci(k- 0). gi(k; 0) may be interpreted
as the information matrix at time k for a failure of type i which occurred
2t time 0.

Detection is decided by means of the decision rule:

failure - b

Lk; 8k 2 e

= . no failure

A
where 9(k) is the MLE (maximum likelihood estimate) at time k of the time

of failure 6. It is taken to be the value of 0e{k-M, ..., k=N} for which

2(x; 6) is largest. The detection threshold, €, is a design parameter to
T be considered in evaluating system performance. More will be said on this

o in section V.5,
|

If it is decided that there is a failure, the estimate of the

failure is given by ;

T ~ -1 A ~
| V(k) = C “(ky B(k))d(k; 8(Kk))

The windows used in the simulations, (k-M, k=N], had N=0 for all

cases, M=10 for jump failures and M=30 for step failures.

111.6 The Failures

The failure modes considered correspond to the four types studied

so far:

[~
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1) State Jumps

x(k+l) = & x(k) + G wik) + Y 841,08
’

2) State Steps

x(k#l) = & x(k) + Gy W (k) + ¥ Opyy g

3) Sensor Jumps

z(k) = H x(k) + G, vi(k) +V _Gk'O

4) Sensor Steps

z(k) = H x(k) + G, g(k) +V 0 9

We did not include the control term in the state equations since
we are not considering closed-loop systems at this point. For open-loop
control nothing would change as far as the detector is concerned, since

the Kalman Filter equations would incorporate the control term and its |

effect is cancelled.

Failures were taken in orthogonal directions in failure space,
(v,, 0) and (0, vz), for a range of vl, vz thoughtvgo be of most interest.
1et us take a closer—-look at the failures we are considering and the
gsituations they might model in a physical system, ih our case the F-8 - ;

aircraft at the speéified flight condition.

I

Consider an open-loop system and observation process, e.g., the
one presented in section I1I.3 by equations (1) and (2):

x(k+l) = @ x(k) +Bu+ Gy, W (1)

z(k) = H x(k) + E“_z. v (2)
and consider the 4 hasic nfailure modes" described in Section It

i) State jump
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ii) State step
i1i) Sensor jump

iv) Sensor step

Keeping the system equations, (1) and {2), in mind, we can say a
few‘things about (i) - (ii). Let us examine these failures in order to

provide some (albeit superficial) physical motivation for the various .

modes. Recall that Xy is q and Xy is ¢. Thus a state jump of the form

(v1'4°)? or a state. step of the form (0, vz)T might be used to model the
effect of a sudden wind shear that leads to an increasing angle of attack.
On the other hand, a'jﬁmp of the form (Q, VZ)T could be used to model a
relatively long-term upward or downward gust that initially manifests
itself as a shift in a. A step of the type (vl, O)T could arise f;om an
elevator failure.

In theuobéervation equation, cases (iii) and (iv), we have a similar
situation., A failure V= (vl, O)T may model a bad data point in the mga-
surement of g in the jump case, (iii), or a permanent bias for the step
case, (iv), in the same signal due to a component failure in a sensor.

By analogy the same may be said about a failure v = (0, vz)T which then
refers to the measurement of a.

Table 3.1, summarizes the failure schedule implemented in the
simulations. State and sensor failure magnitudes are given in terms of
o-leévels of plant and sensor noises respectively. For jump failures nothing
under 10 was looked at since such jumps would be undistinquishable from the
noise. Such failure magnitudes were considered for step failures since
they are detectable because their sustained presence provides more infor-

mation as time passes. We will see how this is reflected in the GLR's when

B I T R pp—
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we take a closer look at the Gi(k; 0) for each type of failure.

The 0's are the followings

v 2

1 s, pitch rate; Oq: Plant Noise Level = 2,2596 x 10~

(o}
aq': Sensor Noite Level = 8,7298 x ].0"3
0 ' -3
, angle of attack; Ou: Plant Noise Level = 4,3335 x 10
\Y

_2 o 't Sensor Noise Level = 6,0000x10

2 .



e g e

-36=

DETECTOR AND
FAILURE TYPE

v 0)

o v,)

STATE 10, 50, 100, 200 16, 50, 100, 200
JUMP
STATE 11

1_0 0, '50' lo' 50, !]:'o- 0' %o' lo' 50'
STEP
SENSOR 10*, 50', 100', 20C"* 10, 50', 100, 200°
JUMP
SENSOR i—oo', %o', 10, %—50', -;-o', 10,
STEP A

5¢*, 100', 200'

5¢', 100', 20c0'

Table 3.1 Set of Failures Considered

o '35?»“-91‘
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IV, Application to the Second Order F-8 Model - Full GLR

Ceaeg s e

The éraphs in Fig. 4.1 and 4.2 represent a way of using PD and PF
together. For a particular step failure and a threshold, the graphs
;tcvide the necessary waiting time (k - 6) for PD to reach the values of
.95 and .99, The failure size is measured in units of standard deviation
of the noise (10 = 1 standard deviation). Fach threshéld has a fixed
value of Pr associated with it. The threshold values 5, 9, and 14 con-

sidered here have P_'s of .1, .01 and .00l respectively. For example,

F
consider a .10 step failure in the pitch rate. To reach a PD of .99 with
PF of .01, a waiting time of 36 steps is required. Each time step is |
1/32 second. The waiting time may be taken as a measure of the speed of
detection with a fixed rate of false alarms.

It is evident from the graph that the full GLR detector is very
fast in detecting state step failure of sizes ranging from .10 to 50. For
the sole purpose of detection (no estimation of v), a small window of
about 50 time steps is sufficient.

Sensor failures require much longer waiting times, as high as 6.6
hours for a .10 step in the angle of attack deviation sensor. This
phénnmenon may be explained by the nature of the associated G matrices (see
Figures 5.2 and 5.3 in Section V). The entries in the G matrices are
small in comparison with the G matrices of state step failure resulting
in a small and slow growing 62. Therefore, the window of a sensor step
detector should be larqge. Its size would depend on the sizes a1 direction
of failure of interest.

Waiting time plots are not made for jump failures due to the

following observation. For jump failures, PD either reaches the desired

T, GRETR e aeunms
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value (.95. .99, otc.) in a few steps or it never reachen it. This, however,
ia in agreement with the previous analysis. The effect of a jump fallure
decays as time »wrogresses thus creating a 62 approaching a constant steady
gstate value. For a fixed threshold, this value of 62 correspnnds to a
fixed value of PD which may be bigger or smaller than the desired PD.
Therefore, jump detector windows should be small since large windows do
not necessarilyvimprove detection.
~ We note that all of these quantities are §35££g_quantigie§A-- i.e.,
Ii.and PD calculated here are aimply the probability that L(k; 8) > € for
fixed X - 6, These numbers should be interpreted as follows:
1)- Fix k - 0 = Tpe We are looking only for failures at the
time 9=k = ro, and thus at any time k we need only evaluate
one likelihood ratio, f(k; k - ro), using the window of
residuvals y(k = ro), Yk - r, * 1), eeer Yik).
2) The numbers Py and P, in the figures are the probabilities
that

L(k; k = ro) > ¢

under the failure (of size V) and no failure hypotheses,

respectively.

Note however that the aiven window of residuals can be used to
calculate other values of %(k; 6) with

k-r, <0<k

0
One canvthen consider questions such as the following: suppose we wish
to detect failures anywhere in the interval {k - ¥ge k]l; suppose we

define the detection rule:

o ek e et
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: ]
of PD s and PF

peclare failure in the interval [k = x,, k] if K of the
1likelihood ratio L(k; 0), 0clk - Ty k] exceed a given
threshold €.

By uging more of the data over an interval, such as in this detection rule,

we would expect better detectiondperformance --4i.e. by taking K > 1, we

can reduce PF' since the effect of one bad data point is somewhat alleviated;
on the other hand, by looking at more than one of the 2(k; 0), we shoﬁld
increase the probability,of.detecting failures. However, the calculation

's for such decision rﬁles, considerations of the values

and the number of %(k; §) to be evaluated in the interval are

of M, €, T,

difficult since the 's are correlated non-central x2 variables, As

mentioned earlier, the situation is somewhat better in the SGLR case, and we

plan to consider this in the near fgture.
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V. Simulation Results

Vv.l. Introduction
The results which the simulations present are rich in content. However,
there seems to be so much information in them that full appreciation of it all

will take some time and much study of the data. Consequently, a simple physical

‘model must be used in this initial stage until we understand better the limi-

tétiong in deteétor performance. Added degrees of”freédom at this point would
inéfease the‘diffigulty"of‘inte:pretation significantly.

~ In the following sections *'a take a look at these results. As a first
attempt at organizing them we will comment on the overall behavior of thg
detectors in section V.2, Then we narrow our perspectives to try.to draw some
concLusions. In section V.3 we focus on jump failures, both in the state and
sensor equations and in V.4 we do the same qu both kinds of step fai;ures,A
Section V.5 considers the problem of falsg alarms and the sensitivity of de- |

tection to changes in the threshold. 1In section V.6 we take a look at the

~elements of Gi(kse). the failure signatures and some interesting differences

--in detection performance for failures in the pitch rate and angle of attack

directions with some physical interpretation are seen in v.7. .
It is hoped that the qualitative descriptions and physical interpretations -

of the detector behavior show why the GLR approach makes sense. All this will

provide a useful evaluation of the GLR detectors as well as of our under-

standing of it to date. These results should suggest the next steps to be

taken.




“Pre-computed I (x)
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All the simulations were done with the corresponding detector for each
type of failure, i.e. for a failure of type i the detector implemented is
based on Gi(k:O).(A different problem is that of cross-detection: 1looking

for a failure of type i with a detector based on Gj(k;O) with j#). The

_ decision threshold was fixed at the value €=5 all throughout and window sizes

" were [M=10, N=0] for jump detectors and [M=30, N=0) for step detectors. All . .

failures occurred at k:SQOT, and the simulations ra» five time units past
the moment when QT,vthgﬂggue”time.of failure, left tﬁé window., Recall, the
window at time k ié.compcsed of {k-M, k-M+1,,..,k-N-1,,k—N}._ Therefore the
simulation stopped at k=M+9T+5=M+10, or kfzo for jumps and k=40 for steps.

The flowgraph in Figure 5.1 illustrates the general make-up of the simulations.
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The system and filter matrices, threshold €, failure time GT.window
size M,N and failure are specif%ed at the beginning of a run. Then the
detector matrices G(k;08), C(k;0) are computed. At everytime k during the
simulation an observation Z(k) is produced which results in its corres-
_ponding filter residual Y(k).. For every 8 in the window specifie_r_lnd(k}_sve)ﬁ

is. computed and

8 = arg maxf(k;6)
o

is selected. Using this estimate of the time of failure, an estimate ef
the failure is then computed using d(k;e(k)) and C (k;@(k)) with the
equations presented in sectionIII.5. This procedure is repeated again

for k+l until the final time is reached.

V.2 Descrigtion of simulation results

Here we provzde a brief qpalitative description of the detector per-

formance for the different failures considered. Recall the decision rule

at time k,

Detection when maxf(k;8)>€=5.0, ee{k-M,...,k-N}ﬂ{e|9>°}
0 : v
The set of simulations consisted of failures of the four types presented
in Section III.6 for the range of values shown in Table 3.l. For each case
two runs were made, each with different noise sequences for the process and
measurement noises. Although two runs do not provide statistically signi-

ficant results, they do allow us to avoid some unjustified generalizations
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pased on a single set of data. Some of the simulation outputs are presented
in sections V.3, V.4 and V.5,

We begin with a description of the results for the case of state

f failures.

16 .... Small delay of 2-4 time steps (%E sec - %-sec.)»before detection
of pitch rate failures, (v,O)T; detection is immediate in the
angle of attack direction. The estimation of the value of V is
erratic, When.GT, the true time of failure; leaves the window,
‘even deteétion itself degrades as it becomes more sensitive to the
noise.

350 ... Detection is immediate in all cases seen. We will see in section
v.5 that this remains true even for threshold at least as high as
e¢=14. Correct identification of ST takes place, especially for
the larger failure magnitudes, 100 and 200, The estimates ﬁ
are less erratic although the best estimate is attained in a few
time steps (§§) with no Ifurther improvement. Estimates degrade

rapidly as soon as BT leaves the window.

Steps:
1/100 ... Detection takes place, although it is somewhat erratic: it may

be lost for varying lengths of time. while not very accurately

or consistently, the fact that a failure has occured can be
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ascertained. The simulations indicate some sensitivity of detec-
3 tion tg the noise processes in the system: one run showed delays
(3 and 13 time steps) in detection while the other one showed no

delays. The larger delay is in the a direction, the angle of

VhpEe s i

:n;i;

‘:wattack. The estimated time of failura varies and the failure

i,;.;

estimates are not close to the true failures.
7; 1 1/20 .. Detection is fast: largest delay was 5 tiﬁebéteps. Apparent sen-
siﬁivity to noise in detection becauée.for one run detection was
jmmediate. Also, no significant difference is seen in delays to

detection for failures in g and a. The estimate.§ oﬁ_the failure

N time goes through a small transient and settles near BT (+1 or 2)
The failure estimate is slightly more accurate than for %5 o
failures but it degrades rapidly as k increases.

10 .... Detection is very fast: either immediate or with a delay of 1

time step for failures in both q and 0. The estimates"g are
correct and show improved accuracy in §'§§ex 1/20 failures,
mainly for failures in q, (v,O)T. Best estimate»QJ reached
after approximately 15-20 time steps with slow degradation
thereafter.

50 ... Detection is excellent: it takes place without any delays for
failures in both directions, q and V. The estimate 6 goes to

OT very quickly and the estimation accuracy in g.increased

s significantly over the previous cases (1/100 to 10 steps). For
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of all, since one time step in this model is 1/32 sec., a delay in detection:
of 8 time steps, for example, represents in real time a delay of 0.25 sec. R
Delays must therefore be fairly long and errors in 9 must be fairly large

in order for them to be significant. » . ‘

shown that C-l(k)G) has the interpretation of being the covariance matrix

the elements of c (k ;0) for the cases of state jumps and state steps for

‘time steps (5/8 sec.

-} 7=

A
example, the estimate vi of the non-zero element of V
(vi=v1 for q and v =v2 for a) comes within 5-10% of the true
value and |vi‘>>|vo‘ where v is the estimate of the other

element of ¥ (true value is zero).

Before'going on to the sensor failures let us note a few ~hings, First

Next a comment on the accuracy of the failure estimates. It can be

of the error in the estimate v. In Figures 5.2 and 5.3 we have plotted

our model. Note that for jumps steady state value  are reached almost.

immediately. This means that. for this type of failure the estimate obtained

initially, after a few time steps, is as good as we can expect to obtain. i

Alternatively, for state steps we note from Figure 5.3 that if-onevwaits 20

) our confidence in the estimate increases considerably.
This is borne out by the simulation results. Figures 5.4 and 5,5 are

plots of the estimate in the phase plane for state jumps and steps of

magnitude 10 and 50. Note that the estimate in the jump cases results in |

greater error and does not improve significantly with time. In contrast to
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this we see that for steps the estimates gradually approach the true values.

We now take a look at the sensor failures,

Jumpss

10' ... Detection is immediate and is maintained while OT remains inside
the window. As soon as BT leaves the window, detection beéanés
erratic. The estimate 8 is very sensitive to noise even while
9,1, is in the window. Also, the estimate §_ is not very accurate
although there is some improvement while e,r remains in the winduw.

50' ... Detection is quick: immediate in mosf: cases, a delay of 5 time
steps showing up in one sample run for a q failure. Otherwise,
no significant improvement in performance over the above 10 éase
except for slightly more accurate estimation of V.

3_100' ... Detection is excellent: immediate in all runs except for one,
with‘ba delay of one time step, in q. 1In estimation, 6 is
correct and the failure estimates g are much more accurate

especially for angle of attack failures. For example, for a

failure in a, (O.VZ)T, of magnitude 200' the estimate
V' = (VgV,) " is such that v, is within 5% of the true value
A
with |v2| 3_10'31‘. For comparison, the estimates for a failure

in q,'.(\)IO)T, are such that 31 is within 25% of the true value

and with |31‘ - |32|.
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Detection is excellent, it is immediate for failures in both
q and a. The estimate 6 is very sensitive to noise and the
failure estimate 3 is wery erratic.

performance of detectors is similar to the above for 1/100':
detection is immediate with 6 responding to noise. Slight
improvement in estimating V.

Immediate detection. Some improvement over 1/100' and 1/20"
failures in the estimation of V.

Generally very good performance: immediate detection except
for one run for a failure in q. The estimate 3 is very close
to GT and the eétimates of the failures show significant
improvement over the above cases.

Very good detection in general., Detection is immediate in all
cases except for a run with a delay of one time step for a
failure in gq. The estimate 6 goes quickly to GT:}. The
failure estimates are relatively accurate: within 5% of true
value, although they degrade gradually after eT leaves the

window. Results are better for the larger failure magnitudes.

Once again let us make some remarks. Figure 5.6 is a plot of C-l(kse)

for the case of sensor jumps. We see that our confidence in the estimate,

inversely proportional to C-l(kse). does not improve noticeably after the

initial time step. In contrast to this, in Figure 5.7 C-l(kye) is plotted

2 AR AR ST YRt MY A S e gy TR ame WP e e e 4 TR

°

g e

et e e e e ——— .



Behad- en a0 e
G et qiavai g Tt

-—T—

10%10™

5x1073

-54m

22

0 0 eens @ omee - @

O-—-..o__..o

5




«55- -

- =1 A.&TU doyg dosuag 26614

N..opxm

Noc_. X9

— ;. ouxol




e s

-yt

sain|jo4 sosuog bm. :a40W14s3 By JO §O)4 Auo]q dsoy4 8°C 61y

|
0z="2
06 :¥N1V4 INYL
r T T T \.. T ]
/
\ -—
/
/
/
/ |

/ S =0 1v 3¥Nv4 25X -

=)  §=) \ YOSN3S NI d11S* @

/e . YOSN3S NI dwnr: ¥

£1= v_k t=A A

R UKL RTINS N



2%

-

Toogt I %

R N = 1]

57 .

~ for sensor steps and in this case as k-0 increases our certainty in the

estimate does too. So again for jumps we £ind that the estimate does not
improve significantly over the value obtained after a couple of time steps,
we know‘:hat we can't do Eetter than that in estimating V. On the other
hahd, in the case of steps we see that a wait of 20 time stpes decreases

c.l(kge), thg_cova:iance of the estimation erros, significantly. Figure 5.8

" contains plots of the estimate of the failure produced by the GLR detectors

for aISQf failure in the sensor for g, both jump and step. We see that, as
mentioned above, the estimate in the jump case improves little with time
while that of the step case achieves its best values after 10 time steps
(k>15) .

Before going on to the next section one last thing will be mentioned
which provides some background for what follows and yvields soﬁe insight into
the dyna@ics of the detector. For failures of all xinds considered except’
for sensor. jumps, when ST drops out ¢’ the window the detector selects 9T+1
and.then.9T+2; 9T+3,... as the value of_g. By the definition of 6, those
values of 3 correséond to 6 with the largest 2(k;6) in the window. We will
try to understand this by means of an example.

Let us consider a simplified model of the aircraft dynamics which is

valid over short periods of time. We can set the angle of attack a to be

the integral of the pitch rate as a first order approximation.

[N B S
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Figure 5.9

A jump in q bere looks like a step in G to the filter which can only

measure Q. This similarity tells us that in the future there might be

some difficulty in cross-detection for these two types of failures.

For this system the filter can track a step input (with zero steady-
state error) and thus G(k-8) goes to zero as k-0 increases for a jump in

q or step in a, which to the filter look.the same. However, for a step in

q, this does not happen since it leads to a ramp at the input to the filter..

For this input the filter has a steady state tracking error and thus G(k=8)
does not go to zero for this case. Therefore if we do not detect a state
jump or a sensor step or jump quickly, it will go undetected. In the case
of a step in g, however, it leads to a sensor ramp as input to the filter
which leads to a persistent effect on the residuals. This means that one
will get more and more information about such a mode as time goes on,

We now have a sensible explanation for the incrementation of 6 once OT
drops out of the window as is the case for state steps, for example. When

8., the time at which such persistent and possibly increasing effects began,

T
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is no longer a candidate for 3 then 6T+j- k=M is seen by the detector
as the most likely time of occurrance, where k-M is the earliest time in
the window. The detector sees that some excitation persists throughout the
entire window. Its best guess for its beginning is the earliest time step

it can guess: the first point of the window.

V.3 Jump Failures: State and Sensors

For jump failures we find that detection in general is very good. The
presence of a failure is identified almost immediately, with possibly some
small delay in some of the failures of smaller magnitudes. When translated
to real time these delays are 1/8 second or less.

Figures 5.10 and 5.11 point out a basic difference between detection of
state jumps and sensor jumps. The graphs represent the values of 2(k;0) for
the 0 inside the window (those inside the window such that 2(k;6)>e in
Figure 5.11). Although they are given for different failure magnitudes, one
is for a 100 state jump in g while the other is for a 200' sensor jump, they
show typical 2(k;0) profiles over a window. While sensor jumps result in
distinctive spikes in the GLR's for the times of failure, state jumps lead to
GLR profiles (as function of 0 for a given time k) which are smoothed out in
gome sense. Thus, in general, detection of state jumps is less aoise-sensitive
than detection of sensor jumps. The system dynamics, in effect, act like a
low=pass filter.

As Figures 5.2 and 5.6 showed, for jump failures the estimate after a

few time steps is already in some sort of steady state. waiting does not

F U N PSS S SO SR
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Figure $.10 GLR's for State Jump of 100 in Pitch Rate, (vl,O).
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Figure 5.11 GIR's for Sensor Junp of 200' in Pitch Rote, (vl,O).
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provide extra information for an improved estimate. As soon as GT leaves

the window the estimates deteriorate, more gradually for state than for

sensor failures.

V.4 Step Failures: State and Sensors

For the case of step failures both in the state and sensois, detection

~ is excellent with some delay for the sm;llest failures tried: 1/20, l/20',

1/100 and 1/100', The largest delay found was for a 1/100 failure in the
state for angle of attack in which case it consisted of 13 time steps, or
0.4 sec. This failure represents a step in angle of attack of 2, 2603x10
radians or approximately 0.0013 degrees.

As far as the estimation of the correct time of failure is concerned,
given our fixed threshold in the simulations the critical factor 1s the size
of the failures., In general we find that the estimate improves with time and.
80 8 undergoes a kind of transient gnd’then tends to OT. The reason for this
is that the GLR's for the step cases grow in time, at leagt while Génrgmains
in the window., For very small failures, 1/100 and 1l/20, 3 is very sensitive
to noisé, which is less 1mportan£ for the larger failures. For state Steps
greater than 1/20, sensitivity to noise is greatly reduced while for sensor
steps a similar reduction takes place only for failures‘greater than 10.

This is not surprising if we recall the discussion at the eAd of section V.2.

We saw that state step failures are in some sense equivalent to ramps in the

sensors and will therefore lead to higher GLR values than sensor steps for the:

same failure size.
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As in the case of state jump failures; we again £ind the same smoothing effect

i

of the system dynamics on £(k;8) if viewed as a function of 0, that is, on
the GLR profile over the times in the window considered at any one instant.
However, we find that step failures in the sensors also manifest this same

smoothing property for big enough failures (100*,200'), i.e., with high .

signal-to-noise ratios, Figures 5.12 and 5.13 show the effect of sensor and

state step failures in the pitch rate q, for two different times, on the

GLR's. .The graphs show the GLk profi;ej~ove: the window for two different

times and indicates taeir characteristic shapes.

V.5 Threshold, False Alarms and Detection

In this section we discuss some results from the simulations which have a

bearing on our attempt to understand how the GLR detectors works and to

develop some intuition about its behavior. The discussion so far has empha-
sized the various failures tried and the range of response of the detectors
given by the delay times of detection and the estimates of the failure and
the time of failure. . We have hinted at the sensitivity of detector per-
formance to the noise in the system, which mainly concerns us for the problem
of detecting small failures. This is very close to the problem of false
alarms, that is, the possibilify of deﬁecting 'something' when in fact no
failure has occurgd.

Detection has been defined in terms of the decision threshold explicitly

by the rule:
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Detection when £(k;0)2€, for k-M<U<k=-N.,

One would therefore want to take a look at the changes in detection

performance and on the rate of false alarms for different thresholds.

5
e Ml e e

The rate of false alarms that results from a specifis implementation of

the detector is an important measure of their performance. This is true

i

bscause false alarm rate is one of the parameters that defines the limits of

acccptabilggy in a given application. In the context of self-reorqanizinq e e
systems, which respond to failures by internally alteriﬁg the control system . . .

logic to maintain given performance indices within specified bounds, a high o

rate of false alarm would lead to excéssive and unneccesary changes. Such

reasoning justifies our effort and time spent trying to analyze and then

verify the fglse alarm probabilities for the various detectors.

In Section II the false alarm probability P, is defined in a way that

~ reduces to

?FﬂP;?b(l(st)>e "o)

_Some runs were made wiﬁh no failures to see the rate of false alarms

',f' we would get and compare them to the computedvalues., Table 5.1 summarizes
some aspects of the results. The precomputed false alarm probabilities are
given for gomparison. The simulatiors were run for the threshold value €=5

and the numbers for the other values of € were easily extracted from them.

}f- . . All quantities ave based on the average over two sample runs, ND is the
e total number of timees of detection, i.e., the number of times k for which

some L(k;0) exceeded the value of the threshold. NDD, however, is the more

i
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realistic measure of false alarm rates. It is the number of distinct
detections: detections declared as different occurrences, i.e., with dif-

ferent 6 ags time of failure,for example, three detections in a row, at

k. k+l, k+2, declaring a failure at a particular 31 count only as one for

"NDD bnut as three for ND. The quantity NTS gives the total number of time

steps that the simulations lasted, 20‘for jumps and 40 for steps.

The reason for looking at NDD is related to the concept of false alarms
implied by the definition of PP' Since PF is based on Ho, the no-failure
hypothesis, and large values of the noise may be undistinguishable from jump
failures, a true test for false alarms should not allow large noise spikes
in the 'recent' past. A more accurate experiment to verify PP would require

us to re~-initialize the detectors every time there is a false alarm.

State Sensor State Sensor
Jump Jump Step Step
Threshold c°”§“‘°d ND/NTS NDD/NTS ND/NTS NDD/NTS ND/NTS NDD/NTS ND/NTS NDD/NTS
P
€=5 . 0,082085 . 0,575 , 0.700 0.475 0.7625
0,125 0,100 0.150 0,150
c=? 0.030197 0.175 0.575 0.3375 0.300
0.100 0.075 0,0875 0.125
€=10  0.006738 0.0 0.300 0.2625 0.1125
0.0 0,050 0,025 . ©,0625
€=14 0.000912 0.0 0.175 0.1625 0.0
____ 0,0 0.028 0,0125 0.0

Table 5.1 False Alarm Rates for Different Thresholds
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As expected, the measure of false alarms decreases for an increased
threshold although there is a discrepancy with the precomputed PF'a. One
must keep in mind, however, the approximate nature of the counts in Table
5.1 and the limited amount of data from which they are computed. It is
expected that for a much larger data base leading to more statistically
significant results, the number NDD/NTS would approach the computed PF's.

Figure 5.14 is a plot of max2(k;0), the largest GLR at time k for ©
in the window, for the state deSectors with no failures. By considering
various thresholds we can see how the numper of false alarms would change.
Although these curves are qualitatively representative of detector performance

under the condition of no failure one must keep in mind that this was for
one particular run, and therefore true for a particular noise sequence,
The actual values plotted would be different for another sample run.

In general, raising the threshold to a value of e¢=7 eliminates a sig-
nificant number of false alarms. Most of them are removed when €=10.
However, the threshold is limited by the specified probability of correct
detection.

In raising the threshold we make detection of small failures more aif-
ficult and we reduce the correct detection probability. Large failures

(>>10 or 10') are not affected because the GLR's reach very high values
almost immediately. As failures of smaller magnitudes are tried however,
a raised threshold results in delays before detection and in the possibility

of missing the failure altogether if it is very emall. This is especially

oy el
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so for small jump failures in the nensors, since the GLI''s reach the maximum
value quickly anl decrease afterwards.

Thus we see that this is a very practical question of performance ac~
ceptability. It”is,possible that for some applications we know a priori
that no small failures occur, or perhaps we are not concerned about them,
then a higher threshold might be advisable. 1In conclusion, this is a ques-
tion to be answered by the problem at hand and by the mininum standards ofu
performance that are specified.

From the simulation data it is possible to infer the detection beheviorv
for higher thresholds. We find the following: -

Jump Failqres | o :

For jump failures rn the state of magnitude greater than or equal Fe
50, detection is virtually unaltered wheh the threshold is raised from its
original value, €=5.0, except for the decrease in false"alarms. In ﬁhe
case of 10 state fail ures however, a number of originally correct detections
are eliminated along with the false alarms. This is mostly for k-e small
so in effect we introduce a delay to the tiﬁe of detection by raising the
threshold.

| This is summarized in Table 5.2 where the delays in detection of failures

are shown for state and sensor jumps of different magnitudes and for additional
values of the threshold. For a given failure and threshold, the two ehtries
are the delays after GT until *he first detection for two sample runs
differing only ir. the noise sequence followed. An entry of « simply means

that for those values there was no detection at the end of the run, at k=20
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for jump failures and k=40 for step failures. It is probable that for a

longer waiting time detection would take place. Note the difference between ‘

the 10 state failures and those of larger magnitudes.

 gensor failure detection shows similar ~ffects. The difference in
detection between the two kinds of failure lies in the range of failure
magnitudes below which even correct detection is affeceed (besides false
alarm rates). For sensor jumps this degradation in performance is seen
even for 50' failures, although slightly less pronounced for this value..
Once again this is seen in Table 5.2 where the same informatlon is shown .
as for steee‘jumps. Also note that detection of sensor jumps in o is less
sensitine to changes in threshold than similar failures in q. This is
partly due to the fact that the measurement of a has a higher signal=to-
noise ratio than the measurement of q. o

Furthermore, we find that for sensor.jump the number of false alarms,

which generally follow when 0 drops out of the window, is significantly
reduced for a raised threshold. Almost all such false alarms are eliminated

for €=10.

~A .
Figure 5.15 shows the values of max®(k;0) = 2(k;0(k)) as it changes
_ 6 .
with k for 50 state jumps and 50' sensor jumpe., The time of failure and
that for which BT drops out of the window are indicated. Notice the drop

in the value of 2(k;3(k)) for jumps, especially in the sensors, when OT

PR REUESFOUIY. IR

PO




=71~
} STATE JUMP: (V,0) T SENSOR JUMP: (V,0)

'y gm5 g=7 €=10 _€=l4 v €=5 =7 e=10  €=14
T w0 2,4 3,4 3,5 1,9 10" 0,0 0, 0, 4,
— ss 0,0 0,0 0,0 0,1 5q° 0,5 0,0 1,0  ©
100 0,0 0,0 0,0 0,0 100' 0,1 0,6 0,% 0,
206 0,0 0,0 0,0 0,0 200° 0,0 0,0 0,0 0,0

e T oTATE JUMP: (O V) SENSOR JUMP:  (0,V,)
.10 ~ 0,0 0,0 15,0 ®,2 10! 0,0 0,0 0,0 7,®
5¢ 0,0 0,0 0,0 0,0 50" 0,0 0,0 0,0 0,0
100 0,0 0,0 0,0 0,0 106' 0,0 0,0 0,0 0,0
- 200 0,0 0,0 0,0 0,0 200' 0,0 0,0 0,0 0,0

Table 5. 2 Delays in Detection for Different Thresholds-

Jump Failures Measured in time steps from. 9
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drops from the window. As we have seen before, in thes¢ cases the measur-
able effect of the failure on the residuals goes away quickly. Therefore,

if we think of the GLR detector as, in a sense, matching the fa;lure signature
characteristic of a particular typeuof failure (as given by G(k;6)), then
one would expect that very quickly after eT drops from the window (k;6(k))
would decrease. This happens because there is very littlz correlation with
the information corresponding to BT+j, where j§ is small,

Step Failures

For step failures, once again, sensor failure detection is more sen-
sitive to changes in the threshold than state failures, Whereas for state
steps of size 1/20 or greater only a small delay to the time of d§tection
is introduced, for sensor steps greater degradation in detection is seen
even for lo' steps, A threshold of €=14, for example, for the given
window size usedv(M=30, N=0) makes 1/100° sensor.steps very hard to detect.
Notice that if we also increase our window size enough we regain detection,
although with a delay which might not be acceptable depending on the appli-
cation.  This is due to the fact that while OT remains in the window
2(k;61k)) is non-decreasing for the case of sensor steps.

Figure 5.16 is a graph of l(kgatk)) for 1/20 state steps and 50' sensor
steps as it evolves in time. We can see the generally increasing nature of
the GLR while QT remains ir the window for step failures, as mentioned above.
Also note the rapid increase in the GLR soon after BT. For higher failure

magnitudes, the effect of an increased threshold reduces to the elimination
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of false alarms and perhaps the introduction of a small delay in some cases,
of the order of a couple of time steps, The figure illustrates another
fact: the higher values of the GLR for state steps, even for smaller failures

than sensor steps. It is a state step which leads tc the most persistent

‘ effects and this is manifested in these graphs of the GLRS's.

" in Table 5.3 we have the delays to detection for step failures and
various thresholds just as in the case of jumps. In the case of state

steps greater than 1/100 detection does not degrade significantly with the

-increased thresholds. .In the case of sensor steps this is true only for

small increases in the threshold as large delays may be introduced for

_somewhat larger thresholds. In general it is true that failures of mag-

nitude 50 and S0' or greater are detected very rapidly and are not very
sensitive to threshold changes of moderate size.

concluding, higher thresholds look promising if one is irterested in
moderate sized or large failures. Ai the pirice of a possible small delay
before corractly detecting the failure, one gains a considerable reduction
in the false alarms. If, on the other hand, one is interested in small
failures (<10 for statc jumps, <5¢' for sensor jumps, <1/20 for state steps
and <1¢' for sensor steps), then the threshold selection must be carefully
made. The trade-off between acceptable detection and false alamms is much
more sensitive to small changes in the threshold for this range of failures.

The study of the various detection probabilities takes on special significance

in making such decisions.

DS S




STATE STEP: (V,0) "SENSOR STEP: (V,0)
V) €ea5  g=7 © €=10 €=14 \Y €=5 €= €=10 €=14
1/100 3,0 4,0 7,5 17,13 1/100* 0,0 3,0 4,» w,®
- 1/20 2,0 3,4 3,4 3,4 1/20" 0,0 2,0 4,9 ®,26
10 1,1 2,1 2,3 2,3 10’ 0,0 2,5 3,5 7,9
S0 0,0 0,0 0,0 0,1 50" 0,1 1,3 1,3 2,4
100 -~ et - - 100' 1,0 0'1 0'1 0'1
200 - - - - 200" 0,0 0,0 0,0 0,0
STATE STEF: (0 V,) SENSOR STEP: (0 V,)
17100 13,0 14,0 14,22 14,33 1106 0,0 3,0 15,0  27,®
1/20 5,0 5,0 6,0 6,2 1/20"' 0,0 0,0 15,0 27,
g 1,0 2,0 2,0 3,2 10" 0,0 0,0 15,0 27,2
50 0,0 0,0 0,0 0,0 5q' 0,0 0,0 0,0 0,0
100 - - - - 100' 0,0 0,0 0,0 0,0
200 - - - - 200" 0,0 0,0 0,0 0,0

Table 5.3 Delays is Detection for Different Thresholds:

Step failures. Measured in time steps from OT.
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One way to resolve this problem in the case of step £r .ures is to
‘'use a longer window, tﬁus allowing the non-centrality parameter, 62, to
increase and so achieving a highexr probability of detection. Another pos-
sibility which one might want to look at is the concept of a variable
threshold to be used for small step failures. Because of the growing
GLR's, after a failure has been detected with a relatively low threshold
€, one could raise the threshold to a value where only the highest GLR's
would be accepted. This way the failure effects in some sense are isolated

and tracked., This is a question for future consideration.

P S SO S
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V.6 G(k; 0); The Failure Signatures

In this section we will take a closer look at the Gi(k’ 0), the
failure signature matrices, which are at the center of all the computations
which take place in the detector equations. If we recall, Gi(k’ 8) propa-
gates the effect of a failure at time 0 to the residuals of the Kalman

filter at time k.

We saw in section 2.2 that because we are working with linear systems,

the residuals may be decomposed into two comporients
Yik) = Y(k) + G(k; 0)v

where i}k) is the residual which would be present in the absence of failures
and i}k) = G(k; Q)Y is the contribution to the residuals from the failure V.
The log=-likelihcod ratio 2(k; 0) was seen to be a quadratic in the output
of the matched filters, gjk;,e),which in turn are weighted sums of the

residuals. Both quantities depend directly on Gi(k; 0):

alky 9) -ZQT(:‘;; 0)v 1 (3)Y(3)
j=

Clks 6) = 29_’”(1; OV ()63 O
jn

Rlks 8) = a (k) 0)C L(ks B)alks ©)

The G(k; 0) are precomputable and in Figures 5.17 to 5.20 we have
plotted the elements of this matrix as functions of {k-8) {in our case
G(k; 8) = G(k-0) because the system is time~invariant) for the times
corresponding to the window lengths implemented. Notice that in the

case of state and sensor jumps, Figures 5.17 and 5.18, the elements of
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Fig. 5.17 State Jump G(r),r=k-8 .
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G(k~-0) die out as k-0 increases, This is what one would expect qualitatively

for a stable system since the effects of an impulse are short~lived. Also
note that for sensor jumps the Gij(k' 0) die out much faster., Recall that
the sensor failures pass through one less integration (only the Xalman filter)
than state failures (system dynamics and Kalman filter) before reaching the
residuals as seen at the end of section V.2, Also the system eigenvalues
are near one, the stability boundary for discrete-time systems, It is not
surprising then that the effects of state failures on the residuals of the
filter in this case persist for a longer time than for semsor failures.

Similarly, in the case of state and sensor step failures shown in
Figures 5.19 and 5.20 we see a correspondence to the previously explained
fact that their effects are more persistent due to their sustained presence.

Let us méke some simple observations about the propagation of the
failures to the residuals of the filter. Consider a failure y of a given
type and suppose we have computed the corresponding G(k; 6) for the appro-
priate window size. The component i}k) of the residual due to the

presence of the failure is given by i}k) = G(k-6)v or, in our two-dimensional

caee, \
?1 (k) G, (k=6 Gy, (k-6) v,
Y, (k) G,y (k=8) Gy k=®) | | v,

We see that 6, and G, , give the effect of the failure on the 15

component of the residual. Alternatively, Glj andvczj give the effect of
the jth failure component on the different elements of the vector of

residuals.

In our case, with failures in orthogonal directions we get for the

case of pitch rate failures
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Fig. 5.20 Sensor Step G(r), r=k -0
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0l 'Yl(k) = Gu_(k-e)\’:L
A

‘ and similarly, for angle~of-attack failures

T < '
Vim0 V)5 Y,(K) = G ,(k=0)V,

';2 (k) = G,y (k-0) Vye

By investigating the relationship between y and i(k) on the one hand
and the relationéhip between i(k) and A(k; 6) on the other, one 'cabn>e,xt;act.'
some more infomation about the degree of detec.‘tabili,ty of different
regions in the fa\ilﬁ:;e space, Letting y(j) = i(j) + G(3; 0) V in the

expression for dlk; €,
3 T -1 o s .
dk; 6) = S ;;G (3; OV (N [x(3) + 63 eyl
3= . o ,

= i(k: 0) + 2 G (35 OV T(416(5s 8) v
3=6

=d(k; 8) +Clks Oy
where é (k; 8) is what would appear if there were no failure at all. Then .
the log~likelihood ratio can be expressed in a similar fashion:
Rk; ©) = [d(k; 8) + Clksy MVITC (ks ) [dlks 8) + Clks B)Y]
= a (ks O3 ks O)ALks 0) + Ttk 81T (ks O)E (ks B)
ik ¢ ks 01 Clky By + Vielks BIC ks 6) +Clki0)y
. T T .
= L(k; 8) + 2vd(k; 8) + v Clk; 01V

If we carry this analysis further by studying the incremental

variations in L(k; 0) considering Liks ) as a rominal value we cuuld map
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out regions in failure space, Vl x vz. which for different timeevin the
windoﬁs lead to larger valnes of L(k; 0) and thus increasing the probability
of detection. An analysis of this ki. d may indicate some a priori limitations
in the detection of certain failures. By further investigating these plots
of the elements of G(k; 9) and those of ¢ (x-0) shown before for the
different failure types much qualitative inf rmation may be obtained on the

performance of the detectors.

" - another related area of interest is that of finding approximations.to
ﬁhe.v;rious curves. Computationally it would be advantageous to be ablémtp .
replﬁce}the Gij(k' 0, for example, by simple functiqns‘such as constgngsﬂ
or ramps if detector petfofmance keeps within acceptable bounds. For

example, curves of the form

Figure 5.21

might be approximated by simpler ones of the form

Figure 5,22

[R5 SO SRS
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or of the form

 /

Figure 5.23

e e ok e

The reductions in computation and storage might be significant enough
to make the implementation of the full GLR more att:active from a practical

peint of view, Furthermore, one could try to select the apprcximating

functions in.a way such that the sub~optimal design is less sensitive to
noise or certain parameter changes, or #o accentuate certain features which R
would render failure classification an easier task once detection has taken . . s
place. Alternatively, it may be possible to formulate an optimization prob=- ,
lem the solution to which gives the approximating functions, from a speci=- |
f;ed class of functionsg which minimize PF while maximizing PD or keeping it -
constrained to a certain interval (PD >a,0<acx<1).
Further study of some of the possibilities mentioned seems fru!tful i
in the long run since they offer potentially useful implementation
characteristics thus increasing the practicality of this approsch. Overall
performance might be improved if noise and parameter sensitivity is
reduced. When some sensitivity analysis is applied to the detectors it
mey be interesting to compare the performance to that obtained threough

the use of the above approximations.
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V.7 Directional Effects

Briefly, there are some instances when detector behavior shows some
mdrked differences between data for failures of type (vlp O)T, in the . 4
pitch rate dynamics or observations, and that for failures of type (O, vz)T.
in the angle of attack dynamics or its observations. Through the study of
such particular features of the performance of the detectors we expect to
get some initial information on some sensitivity questions such as flexibility
or rigidity of the detector response to changing failures, signal-to-noise
ratios for the failures, etc.

The most interesting behavior is captured by Figures 5.24 and 5.25,
They show plots of the likelihood ratios in the windowé for two different
times in the simulations. They are both for sensor stéps: Figure 5.24 is
for a 200q' step in the pitéh rate sensor and Figure 5.25 is for a 200a'3'ﬁ
step in the angle-of-attack sensor. The shape of &(k; 9) as a function
of 0 for k = 12 is seen in Figure 5.24(a) and for k = 32 in Figure 5.24(b) .
for O inside the window at those times, The true time of failure is GT = 5.
Notice the monotonically decreasing shape from ST on of the L(k; 8) for
(Vl, 0)T the fajlure. Figure 5.25(2) and 5.25(b) show the corresponding
data for a failure in the other direction, (0, vz)T.

The diffe“ence in the shape of the &(k) 8) is striking. 1In contrast
with the first case shown in Figure 5,28, the second case, shown in 5.25,
is like a decaying exponential after GT. This phenomenon becomes more
noticeable and distinctive as the size of the step failure in the sensor
is taken larger. It turns out that the first effect on the L(k; 8) shape

is seen in deteotion of steps in the state in both failure directions.

Moreover, the second kind of effect is seen in the shapes of L(k; 0) for
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detections of state jumps, also in both directions. As we try to understand
what is going on which leads to these results we expect to clarify further
some of the interactions between detection of failures with Li.. GLR method
and peculiarities or characteristics of the specific system worked with.
Some of the questions in the first paragraph are of interest here.

We can make some remarks here trying to explain the first-order com-
ponents of this behavior. In Figure 5.19 we saw the elements of the sig-
nature matrix for sensor step failures plotted versus k =9 for the window
size considered. Notice that the elements P and G,/ which give the
effect of afétep failure in a on the residuals, tend to 2zero while Gll and
621. which give the effect of a step failure in q on the residuals, increase
and resch non~zero values. Therefore the added components of the residuals
due to a step 1n_q begin to diminish immediately after they appear and,
not being very éeréistent, the %(k; 6) for 6 > BTvdecrease faste: than
2(k; 8) in the case of a step in gq. In the latter case, a step failure
in q, the added components of the residuals are persistent, if not in-
creasing, and the 2(k; 6) for 6 > GT decrease in value at a lower rate.
While there may be other factors affecting the behavior of L(k; ©), they
are secondary and modulate these first-order trends.

There are Sther small details also of similar features which point
out differences in detecting failures in particular directions of failure
space., For example, in detection of sensor steps ir. particular, the f£(k; 0)
are larger in value, on the average, for failures 1n,(v1, O)T than for
failures in (0, vz)T. It seems to be related to the noise handling
capability in each case. In any case, it is necessary to understand the

factors at work here, as important questions on the usefulness and

e

e e e b nbrmm Y o




-
-

«Q]l=

PPN T [

reliability of the GLR detectors are involved and their answers will yield
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V.8 Conclusions and Future Investigations

As stated in Section III the purpose of these simulations was to
obtain meaningful results with physical interpretation in order to get
insight into the dynamics of failure detection via the GLR approach, In
the process we have gained scme experience with failure detect;on techniques
and some understanding which allows us to evaluate the performance of the
detectors being studied. It also helps us to find out what kinds of ques-
tions we should be asking as we go along.

A realistic and yet simple model of an F-8 aircraft at a given
flight condition was used in simulations in which the detectors corres-
ponding to the various failure modes studied thus far were implemented.
The range of failures considered provided vs with a large amount of data
which displays the basic features of the performance of the GLR detec;ors.

The qualitative analysis and physical interpretation of the simu-
lation results havealready allowed for an initial evaluation of the
observed performance. They have also brought out some of the key factors
determining the quality of detection., We expect to further enhance our
understanding as we have more time to interpret these results and to
integrate them with those to be obtained in the near future.

The overall detection performance seen is excellent for this stage
of our research. Detection takes place immediately for most failures
considered, certainly for the majority of those of direct interest from
an applications point of view. Even those of very small size are still
detectable, at least for step failures, although witl some degradation

in detection performance such as delays to detection time and reduced

accuracy of the estimates.
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In general, steop failures are easily detected and identified and so
are jump faiiures of sufficient magnitude, larger than 10 for example., 1In
the case of jump failures those in the state are in general much easier to
detect correctly than sensor.failures.-. The noise effects are smootﬁéd out
by the system dynamics and the jump itself showe up as a persistent dis-
turbance in the measurements. Thus we aiready anticipate some difficulty
in disginguishing between state jump failures and sensor step failures of
comparable size in cross-detection studies. sbme initial simulation results
in which all four detectors are 1mp;émented at once for a given failure
seem to bear this out. This points to the importance or necessity of using
more complex’techniques to be able to imppove detection and to eliminate
redundancy. This was one of the reasons for looking at detection methods
such as the GLR approach in the first place. The use of more sophisticated
techniques in detection anc estimation of failures is undoubtedly necessary
when one contemplates compensation in the filter and/or controller for self-
reorganiging closed-loop systems. Otherwise one runs the risk of massive
and costly system changes without the certainty and accuracy of estimates .
called for by such action and resulting in degraded, if not unstable; overall
system bshavior. | | | |

The area of decision threshcld selection and false alarms must be
looked at in more detail. The apparent false alarm rates: nbserved in the

simulations are higher than the computed false alarm probability, P We

F.
need to study the correlations between the 2£(k; 6)'s with both 8 and k

varying, For the GLR method presently worked on the log=-likelihood ratios

.aﬁe noﬁcentral x2 random variables and obtaining their correlations is

difficult. This is one of the reasons for studying the simplified GLR (SGLR)
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method in which the failure is assumed to he of a fixed form and its estima~-
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tion 18 removed from the detecction process., For this technique the %(k; 6)'s

are gaussian random.variables which thercfore makes such statistical analysis
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feasible. We hope to derive such quantities as the conditional probability

S 13

of a false alarm after a false alarm has occurred, the conditional probability
of detection after a correct detection and other similar ones of practical
and theoretical interest.

% The SGLR will be looked at for other reasons as well, The detector

equations are being developed for the four failure modes studied so far and
: the same failures will be simulated as for the full GLR once they are
ready. From the results we get we expect to be able to answer some questions

on simplifications and sensitivity. The amount of computation and storage

e
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necessary for implemsnting the SGLR method is significantly less than for "
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the full GLR method so that questions arise as to whether the performance

will also degrade accordirqly. If not, there is the possibility of using

Wt

the SGLR detectors during normal operation and of switching over to the full

5.

L ’ GLR once detection takes place. Because of the greater ease and cost-
> effectiveness of the SGLR one may be able to implement a bank of such

detectors for a range of failures of interest in the monitoring phase

failure detection. There are many interesting and related questions which
remain to be asked as we get more involved in the analysis of the per-
formance of the SGLR method of deﬁecting failures.

v C One of the next areas to be v-rked orn, which is already under

DA

investigation and has been mentioned is that of cross=-detection. This

~yiy
- H

refers to the possibility of detecting some or all kinds of failures with

'a few or one kind of detector only. This is of obvious interest since
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one of the drawbacks of the GLR approach as it ie now implemented is the
fact that a detector is designed for cach particular failure mode. Remarks
similar to the above ones tor the SGLR also apply here except for those
about correlations of £(k; 0), a problem which remains in this case since it
gtill is a x2 random variable. fThere are interesting comarisons to be
made, once we have some data, on the minimum implementation required to
achieve a specified performance in d:tection as measured in some relevant
way.

Another problem that we will be looking at in the near future is what
we call detection under mismatched conditions. Briefly, this refers to the
question of the QCtual performance obtained when the real system is somewhat
different from the model on which our calculations for the detectors are
based. Bverythinq is done as before, but the measurements are made on the
simulation of the aircraft at a different flight condition, for example.

We expect the results here to tell us something about the sensitivity of

the detector performance with respect to changes in parameters of the model

'which is to represent our knowledge of the real physical system, By doing

similar tests on the SGLR detectors we can evaluate the relative robustness
of each design to varying conditions. Again these are very important
areas that must be investigated since they have many ramifications of
interest for applications.

Still further along remains a more complete sensitivity analysis
of both the full GLR and the SGLR techniques. We expect to derive some
equations for +he changes in certain variablec of interest such as
{c (ks 6)}13. the elements of the information matrix, and P, and P, with

respect to variations in a parameter vector of importance.
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Vi. Datailad Description of the Multiple Detector Simulgtian Program {(MDSP)

In order to obtain practical insights into GLR performance, extensive
simulation experience is necessary. A single system provides a common basis
for comparison and analysis. We are currently focusing our attention on the
F=8 aircraft as described in Chapter II, Simulations cf a system under
different conditions may have a large common data set such as the detector
matrices (i.,e., G(k; 0), C-l(k; 0), etc.). Hence an efficient simulation
program must be able to take this into account to eliminate redundant
generations of such data sets., In aédition, the program should be able to
handle different systems sequentially in a single run. Presently, only the
four basic detectors (state jump, state step, sensor jump and sensor step)
are simulated. However, other detectors such as simplified GLR will be
considered soon. Therefore, the program should have enough flexibilities
to allow additions. The Multiple Detector Simulation Program (MDSP) is a
FORTRAN program which has been developed to achieve these objectives,

The MULSP simulates a system with a single failure and with a set of
up to four detectors simultaneously in operation. The MDSP can simulate
any number of systems sequentially in cach run. For each system, simula-
tions can be performed with different sets of detectors, and for each
system and each set of detectors, simulations may be done with a set of
different failures, one after another. . In order to reduce redundant
computations of detector matrices, when detectors are used repeatedly,
all detactors are computed before any simulation and stoxed. They are
activated as needed.

Another feature of the MDSP is its ability to simulate mismatched

systems, The detectors can be computed according to one system and failure
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mode while the simulations are actually of another. This option is aimed

at &.e tudy' of the sensicivity of GLR technique to system parameter
variation.

The following section will prisent a detailed description of the
features, structures, function and usage of MDSP. Together with the
appendix containing the commented program code and further details in
the program algorithm, this section p:ovides a complete description of

MDSP. Finally, some possible further additions to MDSP are discusseq.

I. The MDSP: Detailed Description

An overview of the program functions is presented in section I.1l,

1.2 contains the definitions of input data and program usage.. Section 1.3

describes the structures of MDSP in dega:ll. Precautionary rema - are
made in I.4. | R

| vNote that this section is’ intended to provi.del a clear view of the
approach and structure of MDSP and the detailed description of algorithms

is not included. The reader is referred to the commented program code

in the appe dix.

I.l Program functions

MDSP simulates linear constant discrete time systems and Kalman
filters as described in Chapter 2, Furthermore, the filter is assumed
to have reached a steady state; hence the filter gain K(k) bacomes a

constant matrix K.
The tailure modes that MDSP is able to simulate are state Jump,

gtate step, sensor jump and sensor step failures numbered type 1, 2, 3
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»' and 4 respectively. The detectors that are based on these failure modes

3 are numbered type 1, 2, 3 and 4 representing state jump, state step, sensor
jump and sensor step detectors respectively. More detailed model descrip-
tion of the failures may be found in Chapter 2.

I . The sequence of operatiorsof MDSP may be traced through by following

the function flow diagram (Figure 6.1). It is helpful to bear in mind
: ~ that MDSP is divided into six blocks (0, }, 2, 3, 4, 5) each having a o
i different function. After initializations in block O, the system and filﬁer L e
matrices are read in (block 1}. All the detector matrices required in the ”
subsequent sinmlations. are computed according to this system and filter

(block 2). 1If a mismatched systém simulation is not chosen, the program | T
proceeds to set up the bank of detectors (the detectors chosen to operate
simultaneously during a simulation) in block 3. Otherwise, the mismatched
system and filter matrices are read in (block 0), replacing the previous
system and filter, before setting up the detector bank. The new system
and £ilter are the ones to be gimulated; the old system and filter are

the ones the detector system is based upon. Then the simulations of the

system, filter and detector bunk are performed in block 5 with each of the

designated failures inputed in block 4.. During the simulation, outputs
consisting of detector decision, values of the likelihood ratio, etc., are
‘also provided. After all the simulations of the failures are processed,

the program proceeds to determine if another detector bank has been chosen

by the user. If so, the new detector bank is set up (block 3) and the
- . cycle repeats, Otherwise MDSP will determine (through data cards) if
another system is to be considered. If so, the process after initializa-

tion is repeated, Otherwise, MDSP will terminate execution.
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Figure 6.1 Function Flow Diagram
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1.2 Program Usag: and Input Data

Executioﬁ of the program is controlled by variables in the input

data set which can be categorized into four subsets:

System and Filter Matrices 1/0

LNS - INS = 9 signals that execution will terminate after the
present system has been simulated. Otherwise, the program

will proceed to consider a new System after the present one.

IHEAD - An integer array containing the heading or title of the

system; its maximum length is 68 characters.
NX - dimension of state vector

NZ - dimension of sensor vector
10S - I/0 control variable of matrices:
108 = 4 - read and write matrices with title cards

10S = 5 - read matrices with title cards.

LSS - mismatch control, If LSS = 0, no mismatched system simu~
lation will be performed. A nonzero value indicates a

mismatched simulation.

IOM = I/0 control variable of matrices of the mismatched system;

it takes the same values and meaning as I0S.

These variables ara all entered on one card with the following format:

READ (5, 11) LNs, IHEAD, NX, N2, IOS, LSS, IOM

11 FGRMAT (I1, 1X, 17A4, 2(12, 1x), 1%, 311)

In addition, we have the matrix variables:

——e
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PHI - ¢
H=-H
GNX - G

GNZ -~ G

pP - P(k|k-1) in steady state, i.e. k*®
p - P(k|k) in steady state
All of these matrices are read in and printed out using the subroutine
MATIO. The formats involved are:
Title Card:
READ (5, 1002)

1002 FORMAT (1X, 79H)

WRITE (5, 1002)

Matrix entries:

Each row of a matrix is started on a new card; a row containing
more elements than a single card can hold may use as many cards as required

as long as the elements are entered consecutively. The format involved ie

1000 FORMAT (8E10.0).

(1I) Computation and Storage of Detector Mutrices

This set of data is entered via a namelist, DETCMP and hence follows

the namelist input format.
NUD = number of detectors to be computed and stored.

10D - [(0)*. output control of detector matrices. If 10D = 3,

no printing of matrices is done. A nonzero value will cause

e e a e e e : e e L
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the printing cf G(k-0) for k-6 = 0, 1, ... M(I) (see below
for definition of M(I), N(I) and c-l(k- 0) for k =0 =
N(I), N(I)+l, ... M(I). Simple modifications may be made

to point out other matrices such as F(k-0), G:(kfe)vfl, etc.

ID = (1] an array containing the detector type number to be

. computed._
M - [11). array of the Mi values in the detector window specification.

N - [0}, array of the N, values in the detector window specification.

{zp(1), M(1), N(I) } specify the type and window of the Ith detector
in storage.
*{ ] contains the default values if no value is specified on

data card. The variables ID, M and N are arrays and each element
in these arrays takes a default value as indicated in the brackets.
Detector Selection

This data set is also entered via a namelist, DETSZL, which spe-

the detector bank for simulation.

LND - {0]. IND = 9 indicates the end of simulation of the present
system, Otherwise, a new detector bank is chosen for simu-

lation and it is specified in this namelist.
DS - array containing the detector types in the bank.
Ms = {1l]. array of the Mi values of the detectors in the bank.

NS - {0}. array of the Ni values of the detectors in the bank.

AR P Py
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EP - [6). array of {wR threshold values for the detector in the
bank.

h detector in the

{10s(1), MS(I), NS(1), EP(D)} specifies the I°
bank, The detector bank should only contair detectors that are in storage
and possibly with windows that are smaller than the corresponding ones in

‘storage but these windows must be containead in the ones in storage.

(Iv) Pailure and Simulation Data
This set is entered via the namelist FASIM,

LNF - [0). LNF = 9 indicates the end of simulation with the present
detector bank. Otherwise, simulation is to be performed with

the true failure specified in this namelist.

IoP - [2). Outp- option for detector decision; it can take on
possible values (1, 2, 3). The options are explained in the

next section under block 5.

IFL

{1]. the type of failure to be simulated.
KTF - [3). the true failure time ( > 1)

NKM - {15]. time after which simulation is to stop.

RNU - (0). failure vector v (of type ILF).

(v) Captions

This data set is constant and is read in only once and before all
other data. It consiste of two integer arrays, ITYPE and IDET which
contain charactéré that are to be printed at appropriate places of the

output as captions,

[ ‘,"“'fﬁff""",;"”" w— .«. - w,-ﬂi
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ITYPE - a 5x4 array with contents:

locations
ITYPE(I,1l) for I
ITYPE(I,2) for I
ITYPE(I,3) for I

ITYPE(I,4) for I
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1'29--05
1,2,...5
1,2,00;5

1'290005

IDET - a S5x4 array with contents:

locations
IDET(I,l) for I
IDET(I,2) for 1
IDET(IX,3) for I

' IDET(I,4) for I

1,2,...5
1'2'co|5
1,2,...5

1,2,...5

contents
JUMP IN STATE AT
STEP IN STATE AT

JoUMP IN SENSOR AT

~ STEP IN SENSOR AT

contehts
STATE JUMP DETECTOR
STATE STEP DETECTCR
SENSOR JUMP DETECTOR

- SENSOR STEP DETECTOR

Under this setup, the sub-array of ITYPE ﬁith a failure type

number as the constant second array index contains the description

in words of the failure type. As a result, the failure description is

indexed by the failure type number.

IDET and detector type number have

the same relationship as ITYPE with failure type number.

For the present version of MDSP, detector type as well as failure

type can take on four values: 1, 2, 3, 4 representing the four basic

types: state jump, state step, sensor jump and sensor step respectively.

Note that the main program control variables are the flags LNS, LSS, LND

and LNF.

To illustrate the oxdering of these input data, the following

example is included.
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I.3 Program Structure

MDSP is divided into six blocks that interact with one another much
like subroutines. The subroutine approach is not employed due to the need
to pass a large number of arguments and the number involved. The blocks
are separated clearly both functionally and physically so as to ficilitate

the understanding of the program. The one disadvantage is that :ttention

must be paid to variable names so that they are not used for different quan-
tities in future alterations of the program.

The six blocks divide the code according to the following conventions:

statement numbers block function

Block # from to

0 0 999 initializations

1 1000 1999 system and filter matrices 1/0

2 2000 2999 compute and store detector matrices
3 3000 3999 detector selection

4 4000 4999 input failure and simulation data

5 S000 5999 simulation and output results

There are no intermingling and overlapping statements from different
blocks and there are comment statements separating the blocks and stating
their functions. All format statement numbers contain at most two digits
with the most significant digit indicating the block number in which the
format is firet used and defined.

The following is a description of the block functions.

P
!
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(I) Block 0 = Initializations

This block initializes some interval variables of the program. (For
details consult comments in program code). The caption arrays ITYPE and

IDET are initialized via read statements.,
(1I) Block 1 - System and Filter Matrices 1/0

This block provides the code for reading in and printing out system
and filter matrices as well as the I/0 for the mismatched system and filter.
In fact, the same code and storage are used for the original and mismatched
matrices. If the mismatch option is used, the original system matrices are

erased after the detectors are calculated.
(III) Block 2 = Computation and Storage of Detector Matrices

As the execution of this block begins, the data namelist DETCMP is
read in. By detector (matrices), it is meant the matrices F(k - 9),
Gk - 8), &'(k - OV Y, Clk - 6) and C">(k - 8). Even though not all of
these matrices are used in the other blocks in the present version of MDSP,
all of them are stored, anticipating future additions that would utilize
them.

The G matrices of a detector are ordered in increasing value of
k - 0 and stored in a section of a big storage area for the G matrices of
all the detectors chosen to be stored. Pointers are created to indicate
the beginning of the sections for different detectors. Other detector
matrices are likewise stored. The term "polnter® has the meaning of an
"offget” throughout the content of this documentation. Rather than
pointing directly to any section, the pointer provides the storage space

to be skipped from the very beginning of the big storage to get to the
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section. We have the following relation of storage and pointers.
pointers
matrix name of the nane of the associated with
type single matrix big storage the storage

in program 9
3 F (k=8) F FS LF
: Gik=6) G GS LG
G' (k=0)V "2 GTVIN GVS w
: C(k=-0) C cs 1C
- ) CINV c1s e

R sy

Note that the pointers are in fact arrays.

Recall that the dimension of the G matrix depends on the type of

failure assumed, (N2) x (NX) for state failures and (N2) x (N2) for sensor
failures, #Hence, the second dimension varies from detector to detector

and is stored in an array INZ. Then for the I:h detector, we have the

following specifications and pointers:
{1p(x), M(I), N(I), LNZ(I), 1G(I), LF (1), (1), (D},

The sizes of the sections in storages may be determined as follows:

Storage size of Ith section
rs (MX) * (D) + 1) O
GS (NZ) * (M(I) + 1)

cs, C18 INZAI) * (M(I) = N(I) + 1)
GVS LNZ(I) * (M(I) + 1)
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G'S

1
G(0)
1st detector -
G(1)

G(2)

G(0)

. G(1) _ 2nd detector

G(2)

G(1)

3rd detector

G(2)
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According to the praviously defined nature of the pointera, we have
1G(1) = LF(1) = 1c(1) = Lv(l) = O

The value of the (I+l)st pointer is equal to the value nf the Ith pointer
plus the size of the Ith section.
Yor nonzero values of 10D, GS and CIS are printed. However, other

storages may also be printed with some very simple addition to MDSP.

- (1v) Detector Selection

The namelist DETSEL is read in at the beginning ot the~%}ock.
Since all the detectors have been computed and stored, any selection
of these detectors only involves the cérrect jdentification of pointers.

For each value in IDS (*adicating the detector type) the array ID ig
.séatched for the same value. Thén corresponding values in the poinﬁer
arrays set up in block 2 are assigned to a new set of pointer arrayé.“7‘
consider the Ith detector in the detector bank. 1If J is the index of ID
such that

IDS (1) = ID(J)

then ve set

JG(I) = LG(J)
JF(I) = LF(J)
Jo(1) = 1c(d) + (NS{I) = N(I)) * LNZ{J)
V(1) = 1V(J)

INZ(I) = LNZ(J)

1f IDS(I) does not have a matching value in ID or (MS(I), NS(I)] is

not compatible with {M(J); N(3)}, i.e. MS(I) > M(J) and/or NS(I) < N(J)

TR T R
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then INS(I) is dropped and the following values in IDS, MS, and NS are
moved up in the arrays vwhile a message is printed indicating such incom=
patibility. Then NUDS is also decremented by 1.

Since we allow NS(I) > N(J), the first C matrix in CS we want
considered is NS(I) - N(J) matrices after the beginning of the section.

Hence, JC(I) = LC(I) + (NS(I) - N(J)) * LNZ(J).

cs

c(N(J)) , (NS (I)=N(J)) *IN2(J)
c(N(J)+1)

cins(n)) | JG(I1)

In addition, two more pointer arrays are created: JR and JD. The
former points to GLRS (storage for 2(k; 6) of all the detectors) and the
latter points to DTS (storage for 4'(k; 0) of the detectors). The nature -
of JR and JD are similar to the other pointers. The sizes of the Ith
sections in GLRS and DTS are MS(I) - Ns{I) +1 and MS(I) + 1 respectively.

The detector bank specifications (IDS, MS, NS) are printed for

eacy reference.
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(V) Block 4 - Input Failure and Simulation date

Here the namelist FASIM is read in and information contained in

FASIM is printed out for easy reference.

(v1) Block 5 - Simulation and Output

This block consists of four sub-blocks: (a) system and filter
simulation, (b) generation of L(k; 6) for the detectors in the bank,

(c) detector decisions, and (d) output.

(a) System and filtei: simulation

The system is simulated with the failure specified in block 4. The

filter generates the residual necessary for the detectors. The algorithms

o sy,

jnvolved are simple and the code is self-explanatory. |

(b) Generation of %(k; 6)

The computation of d(k; 0) and &(k; 6) is straightforward. However,
the manipulation of quantities in the storage DTS is involved and is
explained in detail in the appendix. This sub-block generates the

a(k; 9)'s and £(k; 6)'s for the detectors in the bank via subroutine

calls to GENBLR.

(c) Detector Decision

The GLRS array is examined to determine if .any 2(k; 6) is greater
than the thresholds (EP). The number of 2(k; 0) crossing the threshold
is recorded for each detector and the five times (values of 6) that have
the largest %(k; 68) exceeding the threshold for each detector are

ordered in decreasina values of &(k; 8).
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A maximum likelihood estimate (MLE) of the failure vector
ie made for the 6 the has the largest 2(k;8) by each of the detectors that
detects a failure (i.e. having some 2(x;0) exceeding the threshold).

(d) Output
Pregently there are threé output options all of which deal with the
plétﬁing of GLR bar graphs. At each time step, thg time_and the Kélman

filter residual Y are printed. For all three options, if no 2(k3;0) crosses

the threshold for a detector, nothing is printed for that detector.

Otherwise the following is printed for the detector:

(S

1. detector number - is the number J such that IDS(J) specifies the
present detector and hence is not the type number. This is done

because the detector bank may contain two detectors of the same

type but having different windows. Then theﬁtype number is not
a good id;ntification. (The correspondence between a detector,
its description (type window and thresholdf and its detector
number in the bank were pointed as block 3 was executed) .

2. the largest 2(k;0) value.

3, the five values of 0 having the largest 2(k;0) exceeding the

threshold ordezéd in decreasing values of 2(k;0)

4, MLE of the failure vector (RNUE is the estimgte in the program). -
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Block S: Simulation and Output

enter
Block S5

initialization

!

Simulation of system and filter |'_

'

Efneration of d(k;0) and 2(k;9)

!

detection decision

exit
Block 5
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For the bar graph output:
option 1 (IOP»l) = no ploting of bar graph.
Option 2 (IOP=2) - plot 2(k;0)'s for all detectors in simulation
if any detector detects a failure.
option 3 (10P=3) - plot 2(k;0)'s for all detectors in bank at all

times.

For a detector that does not signal a failure (no £(kx;0) exceeds
threshold), the bar graph of %(x;8) is scaled as the threshold equivalent

to full scale. Otherwise, the largest 2(x;0) is the full scale value.

1.4 Words of Caution

MDSP manipulates a large number of arrays. Hence, much attention
should be paid to the dimens.i.oning of arrays to aﬁpid painful error such
as writing over onto other arrays. Rules and advices may be found in the
comments in the code.

Many of the matrix manipulations én the proyram employ subroutines
developed at the Electronic Systems Laboratory (ESL), M.I.T. (e.g. MATIO,
MMUL, MAT4, etc). The ESL has also developed discretization and Kalman
filter gain cot’nputation packages which were used in obtaining the system
and filter matrices of the second order F=8 in our simulation studies.
MDSP is compatible with the above packages.

The subroutine, GAUSS, used by MDSP to generate random numbers is a

subroutine from the IBM scientific package.
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II. Plexibility for further Modules

The block structure of the program has no complicated inter-block
interactions. This facilitates the additions of further modules as new
blocks. The lack of intertaining logic in MDSP (except in Block 5 where
the 4'(k;0) vector are generatéd and where detector decisions are made;
but both of these processes are self-contained units) makes the addition
of sub=-blocks simple.

presently the addition of simplified GLR detectors to MDSP is being
considered. Computation of the two probabilities, PD and PF of the
detectors and simulation of multiple failures are examples of‘possible
additions and expansions of MDSP. Furthexmore, MDSP may be easily modified
to accept residuals of the Kalman filter from an external source, making

it possible to be used in conjunction with, for instance, a non linear

simulation.
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vir, Puture Work
pased on the results outlined in this report, we plan to consiQer the

following issues.

Task #l: Cross-Detection and Wrong-Timne Probability Calculations. We
plan to apply the techniques outlined in Section II to the siwplified F=-8
model.

Task #2: Maaehre of Failure Mode Indistinguishability. Motivated‘by the
cross dateetionvproblem. we are planning to develop a measure of mode
indistinguishability. Our initial attempts will involve the use of inner
products of failure signatures»and the definition of "orthogonal failu:e
modes.” We hope ﬁo develop a Gram-Sghmidt orthonormalization Procedure
for a set of failure modes. The idea here is to determine a transformed
set.of signatures so that only one likelihood ratio will become large when
any particular failure occurs. This will greatly simplify the resulting
detector decision logic. In addition, this study can lead to th§ determi~
netion of a small set of "uhiversal signatures,” which can be used to
detect a wide variety of failure, the idea being to use these signatures to
detect failures with subsequent isolation provided by correlating residuals
with A>1a19er set of signatures.

Task #3: Sequential Prob&bilities for SGLR., In Sectiors I1 and 1V, we
noted that if one utilized the “"window" approach to GLR, one would need to

calculate joint probabilities that likelihood ratios %(k;0) exceed some

%
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threshold. In addition, at the end of Section IV, we proposed a possible
detection scheme that requires K likelihood ratiocs to exceed a threshold.
By doing this, we may reduce false alarm problems substantially. Recall
that in Section V we observed that false alarms occurred in bursts -- i.e.
one bad data point would successively trigger off a number of alarms. ‘The
approach outlined in Section IV would help minimize thié problem. We also
note that, as described in Section V,‘the shape of the set of L(x;9) after
a failure is quite distinctive ind is much less so when false alarms occur.
Thus, it is clear that a study of the correlatior behavior of the LR's
would be extremely useful in allowing one to utilize the GLR data in an
optimum manner. However, as mentioned in Section II, the LR's in the full
GLR case are noﬁcem:.ral)(2 variables, and the study of correlated variables
of this type is quite difficult. Thus, we piopose to study these questions
for SGLR, where all of the variables a:e'Gaussian. We feel that SGLR is
wclose enough® to GLR so that our analysis will be valid (in general terms)
for full GLR as well. Thus, we plan to examine the sequential correlation '
oﬁySGLB's and to use this information in the development of efficient detec-
tion rules. In addition, one of our first uses of this information will be

in the calculation of delay time in detection =~ i.e. the calculation of

z(e’e)'ll.li(k-l,e)<e' and a failure

Prob % R(k;0)>c
Vv occurred at time ©

We feel that this task will provide some of the most useful tools for future

development of the GLR technique.
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Task #4: Cross Detection Simulation Studies. We plan to run a series of

‘simulation runs using the simplified F-8 model in order to study the

qualitative properties of GLR cross detection. We hope that these results,

together with the indistinguishahility results from Task #2 and the analytical

tool of Task #3 will allow us to develop a method for minimizing the cross

detection effect.
Task #5: Sensitivity studies and Simulations. One of the key unanswered

queétions is the robustness of GLR to model errors. We plan to run a series

of simulations in which the GLR is designed based on the linearized F-8

dynamics ac one flight condition, vwhile the plane is actually at a second

condition.
Task #6: Simulations of SGLR. It has been conjectured that SGLR, while

not as accurate a detector as GLR, might be far less sensitive to parameter

errors. We plan to implement a set of SGLR simulation routines and to

run a series of simulations in order tovstudy the utility of thi§ mgthod.

Task #7: Development of Several Pedagogical Examples. The GLR approach

as ve have been developing it has a number of aspects that are somewhat

subtle. We feel that in order to clarify these issues, it would be nice

to have several very simple test problems that make the various‘points

relatively easy to observe. We have already done this once (1n.Section V)

and will attempt to find several other test problems that illustrate key

points.
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There are clearly a number of other issues that must be considered in
this study; however, the above represent those tasks we plan to complete
during the present grant period. A full set of additional tasks will be

spelled out in the proposal for continuation of the grant.
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Appendix
I. Algorithms in MDSP

All the algorithms used in the MDSP are straighforward except the
generation of d(k;6) and 2(k;8) in block 5. The computation of da(k;6)

is pe:formed in the subroutines GENDLR called in bluck 5 according to oo

the formulas:

(1) a(k+170) = a(ks8) + G (kt1-8)V Y (k+1)

(2) R(k+130) = &' (k+1;0)C (k417 6)d (k+110)

d(x;6) may be expressed alﬁernately as:
k

(3) a(x;0) = ;c'(j-ewqm)

For a feasible realization of the GLR detection scheme, a finite size
window characterized by k-M<8<k-N is used. The computation of d(k;0)

requires k=-6+1 data points and in particular, d(k;k=M) requires M+l data

points from k=M to k. Consequently, the actual window k=M<6<-N implies an ‘
affective window k=M<8<k within which all the d's have to be stored to
utilize formula (1). (Alternatively, M+l Y's would have to be stored to

use formula (3)).

There are several ways to store the d's in the effective window to

conserve storage. The scheme employed in MDSP is as follows. Consider

the section of DIS (storage of d's for the wiole detector bank) for the

- th
2 I~ detactor in the bank:

- v Tl T e e ST T . T e et



the M d's for the effective window at k+l via the recursiye formvla (1),
However,

indicating an observation point outside

pa

is now used for d(k+l;k+l), a new point in the effective window

process, the same section of DTS at various times contains:

- §ar (kyk-p1)

ap(I)

At time k+1, d(kjk=M+l) through d(k;k) may be incremented to form/

=123~

DTS

4a' (kyk=M)

a' (ks k=M+1)

F

a' (k3k=1)

a'(ksk)

a' (kyk=-M)

a'(kpk=1)

a* (kzk)

k

acquired through the sliding of the window.

Continuing this "replacement"

d(k;k=M) is not used since its incrementation gives d(k+lj;k=M)
the effective window into’the

st and hence a point outside the actual window. But this storage space

d'(k+Mlk+1)
d (k+Msk+2)

A' (k+M+13k+1l)
d'(k+l+1!k+2).

a (k+Msk+M)
d* (k+M; k)

k+M

A (k+M+13k+M)
At (k+M+1lsk+M+1l)

k+M+l

DAY TN L P
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Effectively we have treated this section of atoraqge as "cloned-end" or

"circular” stoxage.

Jp(z) JD(I)+M+1
JD(I)+) JD(I) +M
JD(I)+2 JD(I) +M=1

To be able to tell where the ends of the effective window are, we
Aefined another offset array JS. {JD(I) + JS(I)] points to the farthest
point into the past in the effective window. Hence Js(1) 13 an offset

from the pointer JD(IX). Other points in the window may be easily located

treating the storage section as a "circular" storage.

As each detector is activated, there is a transient during which
the effective window is not £il1led i.e. there is anm such that 0<m<M and
0-k-M<k°, the starting time. Henéé:'during thg transient, the effective
windows is smaller than it is later. As time progresses, the effective
window grows until it reaches its full size (M+1) . Therefore, we define
an array JM to record the sizes of thé effective windows of the detectors
in the bank from the starting time on. The effect of JS and JM on the
storage section may be best visualized via a diagram. For simplicity, we

let M=3,
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DTS
'(1,1) '(2,1) at (3,1} ' (4,1) a'(5,5)
ar (2,2) d* (3,2) ' (4,2) a*(5,2)
'(3,3) ar (4,3 a'(5,3)
' (4,4) | at (5,4)
time 1 2 3 4 : 5
Jp(1)
a'(8,5) a*(9,9) 4+(10,9)
a' (8,6) a* (9,6) d*(10,10)
: a'(7,7) a'(8,7) a9, | d*(10,7)
- v, | laree,® § 0 jarce,8 | d'(10,8)
| time 6 7 8 9 10

+« ¢ Jp(I) + M(I)

—0 : JD(I) + JS{I)

-
-
v
-
-,
=
=

Note that JM(I) is set to M for k>M+1. After the transient (M+l time steps),

? JS(I) is reset to zero every M+l time steps simulating the »circular® effect

T of the storage.

= For each new get of d's, a set of f's is computed for the actual window

(.e. k=M<H<k-N) and stored ir. the GLRS array in the following manners:

wipige e

-
v
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JR(:)
Yy
77
) b) - ) 3
< G 7 [ 9
2(k;k=N) L(k3k=N=1) Liks;k-M+1)  L(k;k=M)

Except the updating of JS and JM as time progresses, the process

described in this section is carried out by the subroutine GENDLR.




