358 research outputs found

    Macroecology of parental care in arthropods: higher mortality risk leads to higher benefits of offspring protection in tropical climates

    Get PDF
    The intensity of biotic interactions varies around the world, in such a way that mortality risk imposed by natural enemies is usually higher in the tropics. A major role of offspring attendance is protection against natural enemies, so the benefits of this behaviour should be higher in tropical regions. We tested this macroecological prediction with a meta-regression of field experiments in which the mortality of guarded and unguarded broods was compared in arthropods. Mortality of unguarded broods was higher, and parental care was more beneficial, in warmer, less seasonal environments. Moreover, in these same environments, additional lines of defence further reduced offspring mortality, implying that offspring attendance alone is not enough to deter natural enemies in tropical regions. These results help to explain the high frequency of parental care among tropical species and how biotic interactions influence the occurrence of parental care over large geographic scales. Finally, our findings reveal that additional lines of defences – an oftentimes neglected component of parental care – have an important effect on the covariation between the benefits of parental care and the climate-mediated mortality risk imposed by natural enemies

    Validation of a modified version of the adult developmental eye movement test

    Get PDF
    This study evaluates in terms of reliability, internal consistency, and validity a modification of the Adult Developmental Eye Movement (ADEM) test, ADEM with distractors (ADEMd), designed to analyse oculomotor system, visual processing and visual attentional behaviour. 302 healthy subjects participated in the study (20–86 years old). Intrasession repeatability was evaluated by analysing the correlation between the time needed to read different parts of the test. Inter-session analyses were carried in 40 subjects by calculating intraclass correlation coefficients and using the Bland–Altman method. Validity was assessed in the outcomes obtained according to age as well as investigating the correlation between ADEMd and attentional useful field of vision (UFOV) test. Correlation coefficients between times need to read each sheet were ≄ 0.95 (p < 0.001). The inter-session intraclass correlation coefficient ranged from 0.81 in the horizontal distractor sheet to 0.97 in the vertical sheet. Bland–Altman analysis showed clinically acceptable limits of agreement. Statistically significant correlations were found between age and ADEMd outcomes (r ≄ 0.55, p < 0.001). Processing velocity, divided attention and selective attention measured with the UFOV were correlated with the horizontal distractor times (r ≄ 0.32, p < 0.001). ADEMd test may be a useful clinical tool to evaluate the combined interaction of ocular movements and visual attentional behaviour.The author David P. Piñero has been supported by the Ministry of Economy, Industry and Competitiveness of Spain within the program RamĂłn y Cajal, RYC-2016-20471

    Evaluation of Tree Species for Biomass Energy Production in Northwest Spain

    Get PDF
    This work was funded by the TRIBIONOR Project (Reference CTQ2013-45155-R) and the coal mining company HUNOSA GROUP supported by the HUNOSA CHAIR at the University of Oviedo (Project Reference SV-17-HUNOSA-1). The authors acknowledge the helpful co-operation of Hunosa staff in this study. The TRIBIONOR Project (CTQ2013-45155-R) is funded by the National Program for Research, Development and Innovation in Society Challenges, within the framework of the National Plan for Scientific and Technical Research and Innovation 2013–2016 from the State Research Agency (Ministry of Economy, Industry and Competitiveness), co-financed with FEDER Funds. The authors gratefully acknowledge the Government of the Principality of Asturias for supporting Ana Álvarez with a fellowship within the Severo Ochoa Program.Peer reviewedPublisher PD

    Residual Expression of the Reprogramming Factors Prevents Differentiation of iPSC Generated from Human Fibroblasts and Cord Blood CD34+ Progenitors

    Get PDF
    Human induced pluripotent stem cells (hiPSC) have been generated from different tissues, with the age of the donor, tissue source and specific cell type influencing the reprogramming process. Reprogramming hematopoietic progenitors to hiPSC may provide a very useful cellular system for modelling blood diseases. We report the generation and complete characterization of hiPSCs from human neonatal fibroblasts and cord blood (CB)-derived CD34+ hematopoietic progenitors using a single polycistronic lentiviral vector containing an excisable cassette encoding the four reprogramming factors Oct4, Klf4, Sox2 and c-myc (OKSM). The ectopic expression of OKSM was fully silenced upon reprogramming in some hiPSC clones and was not reactivated upon differentiation, whereas other hiPSC clones failed to silence the transgene expression, independently of the cell type/tissue origin. When hiPSC were induced to differentiate towards hematopoietic and neural lineages those hiPSC which had silenced OKSM ectopic expression displayed good hematopoietic and early neuroectoderm differentiation potential. In contrast, those hiPSC which failed to switch off OKSM expression were unable to differentiate towards either lineage, suggesting that the residual expression of the reprogramming factors functions as a developmental brake impairing hiPSC differentiation. Successful adenovirus-based Cre-mediated excision of the provirus OKSM cassette in CB-derived CD34+ hiPSC with residual transgene expression resulted in transgene-free hiPSC clones with significantly improved differentiation capacity. Overall, our findings confirm that residual expression of reprogramming factors impairs hiPSC differentiation

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    • 

    corecore