2,553 research outputs found
Density dependent spin polarisation in ultra low-disorder quantum wires
There is controversy as to whether a one-dimensional (1D) electron gas can
spin polarise in the absence of a magnetic field. Together with a simple model,
we present conductance measurements on ultra low-disorder quantum wires
supportive of a spin polarisation at B=0. A spin energy gap is indicated by the
presence of a feature in the range 0.5 - 0.7 X 2e^2/h in conductance data.
Importantly, it appears that the spin gap is not static but a function of the
electron density. Data obtained using a bias spectroscopy technique are
consistent with the spin gap widening further as the Fermi-level is increased.Comment: 5 Pages 4 Figures email:[email protected]
Modeling Single Electron Transfer in Si:P Double Quantum Dots
Solid-state systems such as P donors in Si have considerable potential for
realization of scalable quantum computation. Recent experimental work in this
area has focused on implanted Si:P double quantum dots (DQDs) that represent a
preliminary step towards the realization of single donor charge-based qubits.
This paper focuses on the techniques involved in analyzing the charge transfer
within such DQD devices and understanding the impact of fabrication parameters
on this process. We show that misalignment between the buried dots and surface
gates affects the charge transfer behavior and identify some of the challenges
posed by reducing the size of the metallic dot to the few donor regime.Comment: 11 pages, 7 figures, submitted to Nanotechnolog
Success Factors of European Syndromic Surveillance Systems: A Worked Example of Applying Qualitative Comparative Analysis
Introduction: Syndromic surveillance aims at augmenting traditional public health surveillance with timely information. To gain a head start, it mainly analyses existing data such as from web searches or patient records. Despite the setup of many syndromic surveillance systems, there is still much doubt about the benefit of the approach. There are diverse interactions between performance indicators such as timeliness and various system characteristics. This makes the performance assessment of syndromic surveillance systems a complex endeavour. We assessed if the comparison of several syndromic surveillance systems through Qualitative Comparative Analysis helps to evaluate performance and identify key success factors.
Materials and Methods: We compiled case-based, mixed data on performance and characteristics of 19 syndromic surveillance systems in Europe from scientific and grey literature and from site visits. We identified success factors by applying crisp-set Qualitative Comparative Analysis. We focused on two main areas of syndromic surveillance application: seasonal influenza surveillance and situational awareness during different types of potentially health threatening events.
Results: We found that syndromic surveillance systems might detect the onset or peak of seasonal influenza earlier if they analyse non-clinical data sources. Timely situational awareness during different types of events is supported by an automated syndromic surveillance system capable of analysing multiple syndromes. To our surprise, the analysis of multiple data sources was no key success factor for situational awareness.
Conclusions: We suggest to consider these key success factors when designing or further developing syndromic surveillance systems. Qualitative Comparative Analysis helped interpreting complex, mixed data on small-N cases and resulted in concrete and practically relevant findings
One Problem, Many Solutions: Simple Statistical Approaches Help Unravel the Complexity of the Immune System in an Ecological Context
The immune system is a complex collection of interrelated and overlapping solutions to the problem of disease. To deal with this complexity, researchers have devised multiple ways to measure immune function and to analyze the resulting data. In this way both organisms and researchers employ many tactics to solve a complex problem. One challenge facing ecological immunologists is the question of how these many dimensions of immune function can be synthesized to facilitate meaningful interpretations and conclusions. We tackle this challenge by employing and comparing several statistical methods, which we used to test assumptions about how multiple aspects of immune function are related at different organizational levels. We analyzed three distinct datasets that characterized 1) species, 2) subspecies, and 3) among- and within-individual level differences in the relationships among multiple immune indices. Specifically, we used common principal components analysis (CPCA) and two simpler approaches, pair-wise correlations and correlation circles. We also provide a simple example of how these techniques could be used to analyze data from multiple studies. Our findings lead to several general conclusions. First, relationships among indices of immune function may be consistent among some organizational groups (e.g. months over the annual cycle) but not others (e.g. species); therefore any assumption of consistency requires testing before further analyses. Second, simple statistical techniques used in conjunction with more complex multivariate methods give a clearer and more robust picture of immune function than using complex statistics alone. Moreover, these simpler approaches have potential for analyzing comparable data from multiple studies, especially as the field of ecological immunology moves towards greater methodological standardization
Particle Acceleration in Pulsar Wind Nebulae: PIC modelling
We discuss the role of particle-in-cell (PIC) simulations in unveiling the
origin of the emitting particles in PWNe. After describing the basics of the
PIC technique, we summarize its implications for the quiescent and the flaring
emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be
emerging that, in addition to the standard scenario of particle acceleration
via the Fermi process at the termination shock of the pulsar wind, magnetic
reconnection in the wind, at the termination shock and in the Nebula plays a
major role in powering the multi-wavelength signatures of PWNe.Comment: 32 pages, 16 figures, to appear in the book "Modelling Nebulae"
edited by D. Torres for Springer, based on the invited contributions to the
workshop held in Sant Cugat (Barcelona), June 14-17, 201
Strange meson production in Al+Al collisions at 1.9A GeV
The production of K, K and (1020) mesons is studied in Al+Al
collisions at a beam energy of 1.9A GeV which is close or below the production
threshold in NN reactions. Inverse slopes, anisotropy parameters, and total
emission yields of K mesons are obtained. A comparison of the ratio of
kinetic energy distributions of K and K mesons to the HSD transport
model calculations suggests that the inclusion of the in-medium modifications
of kaon properties is necessary to reproduce the ratio. The inverse slope and
total yield of mesons are deduced. The contribution to K production
from meson decays is found to be [17 3 (stat) (syst)]
%. The results are in line with previous K and data obtained for
different colliding systems at similar incident beam energies.Comment: 16 pages, 11 figure
Centrality dependence of subthreshold meson production in Ni+Ni collisions at 1.9A GeV
We analysed the meson production in central Ni+Ni collisions at the
beam kinetic energy of 1.93A GeV with the FOPI spectrometer and found the
production probability per event of . This new data point allows for the first time
to inspect the centrality dependence of the subthreshold meson
production in heavy-ion collisions. The rise of meson multiplicity per
event with mean number of participants can be parameterized by the power
function with exponent . The ratio of to
production yields seems not to depend within the experimental
uncertainties on the collision centrality, and the average of measured values
was found to be .Comment: 9 pages, 5 figure
Measurement of and mesons in Al+Al collisions at 1.9 GeV
New measurement of sub-threshold and production is
presented. The experimental data complete the measurement of strange particles
produced in Al+Al collisions at 1.9 GeV measured with the FOPI detector at
SIS/GSI. The / yield ratio is found to be and is in good agreement with the
UrQMD model prediction. These measurements provide information on in-medium
cross section of - fusion which is the dominant process on
sub-threshold production.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev.
Partially fluidized shear granular flows: Continuum theory and MD simulations
The continuum theory of partially fluidized shear granular flows is tested
and calibrated using two dimensional soft particle molecular dynamics
simulations. The theory is based on the relaxational dynamics of the order
parameter that describes the transition between static and flowing regimes of
granular material. We define the order parameter as a fraction of static
contacts among all contacts between particles. We also propose and verify by
direct simulations the constitutive relation based on the splitting of the
shear stress tensor into a``fluid part'' proportional to the strain rate
tensor, and a remaining ``solid part''. The ratio of these two parts is a
function of the order parameter. The rheology of the fluid component agrees
well with the kinetic theory of granular fluids even in the dense regime. Based
on the hysteretic bifurcation diagram for a thin shear granular layer obtained
in simulations, we construct the ``free energy'' for the order parameter. The
theory calibrated using numerical experiments with the thin granular layer is
applied to the surface-driven stationary two dimensional granular flows in a
thick granular layer under gravity.Comment: 20 pages, 19 figures, submitted to Phys. Rev.
- …