168 research outputs found

    Silicon Oxide Surface Segregation in CO Oxidation on Pd: An in situ PEEM, MS and XPS Study

    Get PDF
    The effect of silicon oxide surface segregation on the locally-resolved kinetics of the CO oxidation reaction on individual grains of a polycrystalline Pd foil was studied in situ by PEEM, MS and XPS. The silicon oxide formation induced by Si-impurity segregation at oxidizing conditions, was monitored by XPS and its impact on the global and local (spatially resolved) kinetics of the CO oxidation was determined by MS and PEEM. The results reveal a drastic inhibiting effect of silicon oxide on the Pd reactivity towards CO oxidation, manifested both in the collapse of the global CO2 formation rate and in the modified local reactive properties of individual Pd micrograins. The presence of adsorbed oxygen on the Pd surface effectively enhances the silicon segregation to the Pd surface

    Cross-species analysis of genetically engineered mouse models of MAPK-driven colorectal cancer identifies hallmarks of the human disease

    Get PDF
    Effective treatment options for advanced colorectal cancer (CRC) are limited, survival rates are poor and this disease continues to be a leading cause of cancer-related deaths worldwide. Despite being a highly heterogeneous disease, a large subset of individuals with sporadic CRC typically harbor relatively few established ‘driver’ lesions. Here, we describe a collection of genetically engineered mouse models (GEMMs) of sporadic CRC that combine lesions frequently altered in human patients, including well-characterized tumor suppressors and activators of MAPK signaling. Primary tumors from these models were profiled, and individual GEMM tumors segregated into groups based on their genotypes. Unique allelic and genotypic expression signatures were generated from these GEMMs and applied to clinically annotated human CRC patient samples. We provide evidence that a Kras signature derived from these GEMMs is capable of distinguishing human tumors harboring KRAS mutation, and tracks with poor prognosis in two independent human patient cohorts. Furthermore, the analysis of a panel of human CRC cell lines suggests that high expression of the GEMM Kras signature correlates with sensitivity to targeted pathway inhibitors. Together, these findings implicate GEMMs as powerful preclinical tools with the capacity to recapitulate relevant human disease biology, and support the use of genetic signatures generated in these models to facilitate future drug discovery and validation efforts

    DNA Topoisomerase I Gene Copy Number and mRNA Expression Assessed as Predictive Biomarkers for Adjuvant Irinotecan in Stage II/III Colon Cancer.

    Get PDF
    PURPOSE: Prospective-retrospective assessment of theTOP1gene copy number andTOP1mRNA expression as predictive biomarkers for adjuvant irinotecan in stage II/III colon cancer. EXPERIMENTAL DESIGN: Formalin-fixed, paraffin-embedded tissue microarrays were obtained from an adjuvant colon cancer trial (PETACC3) where patients were randomized to 5-fluorouracil/folinic acid with or without additional irinotecan.TOP1copy number status was analyzed by fluorescencein situhybridization (FISH) using aTOP1/CEN20 dual-probe combination.TOP1mRNA data were available from previous analyses. RESULTS: TOP1FISH and follow-up data were obtained from 534 patients.TOP1gain was identified in 27% using a single-probe enumeration strategy (≥4TOP1signals per cell) and in 31% when defined by aTOP1/CEN20 ratio ≥ 1.5. The effect of additional irinotecan was not dependent onTOP1FISH status.TOP1mRNA data were available from 580 patients with stage III disease. Benefit of irinotecan was restricted to patients characterized byTOP1mRNA expression ≥ third quartile (RFS: HRadjusted, 0.59;P= 0.09; OS: HRadjusted, 0.44;P= 0.03). The treatment byTOP1mRNA interaction was not statistically significant, but in exploratory multivariable fractional polynomial interaction analysis, increasingTOP1mRNA values appeared to be associated with increasing benefit of irinotecan. CONCLUSIONS: In contrast to theTOP1copy number, a trend was demonstrated for a predictive property ofTOP1mRNA expression. On the basis ofTOP1mRNA, it might be possible to identify a subgroup of patients where an irinotecan doublet is a clinically relevant option in the adjuvant setting of colon cancer.Clin Cancer Res; 22(7); 1621-31. ©2015 AACR

    Cherenkov radiation of spin waves by ultra-fast moving magnetic flux quanta

    Full text link
    Despite theoretical predictions for a Cherenkov-type radiation of spin waves (magnons) by various propagating magnetic perturbations, fast-enough moving magnetic field stimuli have not been available so far. Here, we experimentally realize the Cherenkov radiation of spin waves in a Co-Fe magnonic conduit by fast-moving (>1 km/s) magnetic flux quanta (Abrikosov vortices) in an adjacent Nb-C superconducting strip. The radiation is evidenced by the microwave detection of spin waves propagating a distance of 2 micrometers from the superconductor and it is accompanied by a magnon Shapiro step in its current-voltage curve. The spin-wave excitation is unidirectional and monochromatic, with sub-40 nm wavelengths determined by the period of the vortex lattice. The phase-locking of the vortex lattice with the excited spin wave limits the vortex velocity and reduces the dissipation in the superconductor.Comment: 11 pages, 5 page

    Context-dependent interpretation of the prognostic value of BRAF and KRAS mutations in colorectal cancer.

    Get PDF
    The mutation status of the BRAF and KRAS genes has been proposed as prognostic biomarker in colorectal cancer. Of them, only the BRAF V600E mutation has been validated independently as prognostic for overall survival and survival after relapse, while the prognostic value of KRAS mutation is still unclear. We investigated the prognostic value of BRAF and KRAS mutations in various contexts defined by stratifications of the patient population. We retrospectively analyzed a cohort of patients with stage II and III colorectal cancer from the PETACC-3 clinical trial (N = 1,423), by assessing the prognostic value of the BRAF and KRAS mutations in subpopulations defined by all possible combinations of the following clinico-pathological variables: T stage, N stage, tumor site, tumor grade and microsatellite instability status. In each such subpopulation, the prognostic value was assessed by log rank test for three endpoints: overall survival, relapse-free survival, and survival after relapse. The significance level was set to 0.01 for Bonferroni-adjusted p-values, and a second threshold for a trend towards statistical significance was set at 0.05 for unadjusted p-values. The significance of the interactions was tested by Wald test, with significance level of 0.05. In stage II-III colorectal cancer, BRAF mutation was confirmed a marker of poor survival only in subpopulations involving microsatellite stable and left-sided tumors, with higher effects than in the whole population. There was no evidence for prognostic value in microsatellite instable or right-sided tumor groups. We found that BRAF was also prognostic for relapse-free survival in some subpopulations. We found no evidence that KRAS mutations had prognostic value, although a trend was observed in some stratifications. We also show evidence of heterogeneity in survival of patients with BRAF V600E mutation. The BRAF mutation represents an additional risk factor only in some subpopulations of colorectal cancers, in others having limited prognostic value. However, in the subpopulations where it is prognostic, it represents a marker of much higher risk than previously considered. KRAS mutation status does not seem to represent a strong prognostic variable

    Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer.

    Get PDF
    The recognition that colorectal cancer (CRC) is a heterogeneous disease in terms of clinical behaviour and response to therapy translates into an urgent need for robust molecular disease subclassifiers that can explain this heterogeneity beyond current parameters (MSI, KRAS, BRAF). Attempts to fill this gap are emerging. The Cancer Genome Atlas (TGCA) reported two main CRC groups, based on the incidence and spectrum of mutated genes, and another paper reported an EMT expression signature defined subgroup. We performed a prior free analysis of CRC heterogeneity on 1113 CRC gene expression profiles and confronted our findings to established molecular determinants and clinical, histopathological and survival data. Unsupervised clustering based on gene modules allowed us to distinguish at least five different gene expression CRC subtypes, which we call surface crypt-like, lower crypt-like, CIMP-H-like, mesenchymal and mixed. A gene set enrichment analysis combined with literature search of gene module members identified distinct biological motifs in different subtypes. The subtypes, which were not derived based on outcome, nonetheless showed differences in prognosis. Known gene copy number variations and mutations in key cancer-associated genes differed between subtypes, but the subtypes provided molecular information beyond that contained in these variables. Morphological features significantly differed between subtypes. The objective existence of the subtypes and their clinical and molecular characteristics were validated in an independent set of 720 CRC expression profiles. Our subtypes provide a novel perspective on the heterogeneity of CRC. The proposed subtypes should be further explored retrospectively on existing clinical trial datasets and, when sufficiently robust, be prospectively assessed for clinical relevance in terms of prognosis and treatment response predictive capacity. Original microarray data were uploaded to the ArrayExpress database (http://www.ebi.ac.uk/arrayexpress/) under Accession Nos E-MTAB-990 and E-MTAB-1026. © 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland

    Engineered magnetization and exchange stiffness in direct-write Co-Fe nanoelements

    Get PDF
    Media with engineered magnetization are essential building blocks in superconductivity, magnetism and magnon spintronics. However, the established thin-film and lithographic techniques insufficiently suit the realization of planar components with on-demand-tailored magnetization in the lateral dimension. Here, we demonstrate the engineering of the magnetic properties of CoFe-based nanodisks fabricated by the mask-less technique of focused electron beam induced deposition (FEBID). The material composition in the nanodisks is tuned \emph{in-situ} via the e-beam waiting time in the FEBID process and their post-growth irradiation with Ga ions. The magnetization MsM_s and exchange stiffness AA of the disks are deduced from perpendicular ferromagnetic resonance measurements. The achieved MsM_s variation in the broad range from 720720 emu/cm3^3 to 14301430 emu/cm3^3 continuously bridges the gap between the MsM_s values of such widely used magnonic materials as permalloy and CoFeB. The presented approach paves a way towards nanoscale 2D and 3D systems with controllable and space-varied magnetic properties.Comment: 5 pages, 4 figure

    Test of Four Colon Cancer Risk-Scores in Formalin Fixed Paraffin Embedded Microarray Gene Expression Data

    Get PDF
    Background Prognosis prediction for resected primary colon cancer is based on the T-stage Node Metastasis (TNM) staging system. We investigated if four well-documented gene expression risk scores can improve patient stratification. Methods Microarray-based versions of risk-scores were applied to a large independent cohort of 688 stage II/III tumors from the PETACC-3 trial. Prognostic value for relapse-free survival (RFS), survival after relapse (SAR), and overall survival (OS) was assessed by regression analysis. To assess improvement over a reference, prognostic model was assessed with the area under curve (AUC) of receiver operating characteristic (ROC) curves. All statistical tests were two-sided, except the AUC increase. Results All four risk scores (RSs) showed a statistically significant association (single-test, P < .0167) with OS or RFS in univariate models, but with HRs below 1.38 per interquartile range. Three scores were predictors of shorter RFS, one of shorter SAR. Each RS could only marginally improve an RFS or OS model with the known factors T-stage, N-stage, and microsatellite instability (MSI) status (AUC gains < 0.025 units). The pairwise interscore discordance was never high (maximal Spearman correlation = 0.563) A combined score showed a trend to higher prognostic value and higher AUC increase for OS (HR = 1.74, 95% confidence interval [CI] = 1.44 to 2.10, P < .001, AUC from 0.6918 to 0.7321) and RFS (HR = 1.56, 95% CI = 1.33 to 1.84, P < .001, AUC from 0.6723 to 0.6945) than any single score. Conclusions The four tested gene expression-based risk scores provide prognostic information but contribute only marginally to improving models based on established risk factors. A combination of the risk scores might provide more robust information. Predictors of RFS and SAR might need to be differen
    corecore