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Abstract
The recognition that colorectal cancer (CRC) is a heterogeneous disease in terms of clinical behaviour and
response to therapy translates into an urgent need for robust molecular disease subclassifiers that can explain this
heterogeneity beyond current parameters (MSI, KRAS, BRAF). Attempts to fill this gap are emerging. The Cancer
Genome Atlas (TGCA) reported two main CRC groups, based on the incidence and spectrum of mutated genes,
and another paper reported an EMT expression signature defined subgroup. We performed a prior free analysis of
CRC heterogeneity on 1113 CRC gene expression profiles and confronted our findings to established molecular
determinants and clinical, histopathological and survival data. Unsupervised clustering based on gene modules
allowed us to distinguish at least five different gene expression CRC subtypes, which we call surface crypt-like,
lower crypt-like, CIMP-H-like, mesenchymal and mixed. A gene set enrichment analysis combined with literature
search of gene module members identified distinct biological motifs in different subtypes. The subtypes, which
were not derived based on outcome, nonetheless showed differences in prognosis. Known gene copy number
variations and mutations in key cancer-associated genes differed between subtypes, but the subtypes provided
molecular information beyond that contained in these variables. Morphological features significantly differed
between subtypes. The objective existence of the subtypes and their clinical and molecular characteristics were
validated in an independent set of 720 CRC expression profiles. Our subtypes provide a novel perspective on
the heterogeneity of CRC. The proposed subtypes should be further explored retrospectively on existing clinical
trial datasets and, when sufficiently robust, be prospectively assessed for clinical relevance in terms of prognosis
and treatment response predictive capacity. Original microarray data were uploaded to the ArrayExpress database
(http://www.ebi.ac.uk/arrayexpress/) under Accession Nos E-MTAB-990 and E-MTAB-1026.
 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society
of Great Britain and Ireland.
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Introduction

Current classifications of sporadic colorectal cancer
take into consideration stage, histological type and
grade [1]. Colorectal cancer (CRC) is a highly het-
erogeneous disease, with clinicopathologically simi-
lar tumours differing strikingly in treatment response
and patient survival. These differences are only partly
explained by current concepts regarding the molecular
events leading to CRC. In recent years, microsatellite

instability (MSI) emerged as an important classifier
with significant prognostic impact and potential for
patient stratification for therapy [2,3]. Some molecu-
lar markers, as well as the mutation status of BRAF
or KRAS genes (predictive for anti-EGFR [4]), are in
use for treatment decisions and patient stratification.
However, patient groups defined by these molecular
markers still differ remarkably in behaviour and ther-
apy response [5,6]. Several approaches to further sub-
type CRC have been proposed, based on combinations
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of clinical, histopathological, gene expression, CNV,
epigenetic and single gene parameters [7–13]. Each of
these different modalities provides its own perspective
on the same underlying biological reality. The CpG
island methylator phenotype (CIMP) status is emerging
as important molecular determinant of CRC hetero-
geneity [11]. The cancer genome atlas (TCGA) analysis
identified a hypermutant group not entirely captured
by MSI status [13]. Several studies have addressed
CRC subtyping using genome-wide gene expression
profiling of relatively large patient cohorts [12,14].
One study used unsupervised clustering of stage II and
III CRCs to identify three stage-independent subtypes,
with BRAF mutation and MSI status dominating one
of the subtypes [14]. A study of stage I–IV CRC sam-
ples segregated CRC into two prognostic subtypes with
epithelial–mesenchymal transition (EMT) as a main
determinant [12]. Another study on 88 stage I–IV sam-
ples identified four subtypes, one correlated with MSI,
BRAF mutation and mucinous histology, two with stro-
mal component and one with high nuclear β-catenin
expression [15].

We recently reported CRC expressing a BRAF -
mutated signature [6], which strongly overlaps with
the methylation-based group of Hinoue [11], and a
MSI-like gene expression group that captures the
hypermutant tumours of TCGA [13], indicating the
potential for identification of robust biological sub-
groups. We now describe CRC subtypes based upon
unsupervised clustering of genome-wide expression
patterns. We characterized these subtypes in terms
of biological motifs, common clinical variables,
association with known CRC molecular markers
and morphological patterns. A key element in our
approach was the use of a system of unsupervised gene
modules—groups of genes with correlated expression.
They are more resistant to noise and have a higher
chance of having at least a few members represented
on various platforms. In addition, as each gene module
is represented by its median expression, the modules
with fewer genes contribute equally to the subtype
definition. We and others have successfully used sim-
ilar strategies previously [16–18]. We validated the
existence of the subtypes and their respective clinical
and molecular marker characteristics in an independent
dataset. Ultimately, it will be mandatory to integrate
the various sources of information on CRC hetero-
geneity into an integrative, robust and reproducible
subclassifier that can become a tool for clinical use.

Materials and methods

A detailed description of all the datasets and analysis
procedures is given in Supplementary methods and
results (see Supplementary material).

Data acquisition and processing
We have built two non-overlapping data collec-
tions: a discovery collection, comprising four publicly

available (425 samples) and two previously unpub-
lished datasets (688 samples with 10 year follow-up in
a clinical trial setting and 64 normal samples) with
known stage status, and a validation collection of
eight publicly available datasets (720 CRC samples)
(see Supplementary material, Supplementary methods
and results). Observations derived from the analysis
of 64 normal samples were further validated on five
publicly available datasets, with both carcinoma and
normal samples available in one batch (totalling 205
normal/adenoma/carcinoma samples). Copy number
data was available for 154 of the PETACC3, as in [19].
Our analysis included a total of 2102 samples.

The discovery collection contained the previously
unpublished 688 CRC formalin-fixed, paraffin-
embedded (FFPE) samples of PETACC3 [6] and
64 FFPE normal colon tissue samples from Centre
Hospitalier Universitaire Vaudois’s Biobank, which
were uploaded to ArrayExpress (http://www.ebi.ac.uk/
arrayexpress/), under Accession Nos E-MTAB-990
and E-MTAB-1026, respectively. Gene expression
data were processed by standard tools to obtain
normalized, probeset-level expression data. For each
EntrezID in the datasets, the probeset with the
highest variability was selected as representative and
the number of EntrezIDs entering the analysis was
reduced to 3025 by applying non-specific filtering.
For PETACC3 and normal colon samples, patients
signed an informed consent form in which the use of
tissue specimens was included, and all marker study
proposals were subjected to the approval of the trial
steering committee.

Subtype definition and validation
For model development (gene modules and subtype
definition, classifier training, identification of subtype-
specific genes) only the 1113 CRC samples of the
discovery set were used, no sample in the validation
collection being used for any model tuning. Hierarchi-
cal clustering (complete linkage, Pearson correlation
similarity measure) and dynamic cut tree [20] were
used to produce gene modules (groups of genes with
correlated expression), from which non-robust modules
(see Supplementary material, Supplementary methods
and results) and a gender-related module were dis-
carded. Each expression profile was then reduced to
a vector of meta-genes by taking the median of the
values of genes in each gene module. The meta-genes
were then further grouped into clusters using hierarchi-
cal clustering.

The subtypes were defined in terms of core sam-
ples —those samples from the discovery collection that
were assigned to clusters by hierarchical clustering,
using a consensus distance [21] followed by prun-
ing of the dendrogram (see Supplementary material,
Supplementary methods and results). The clusters to
which the core samples were assigned were called
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subtypes . The rest of the samples from the discov-
ery collection, not assigned to subtypes by this pro-
cedure, were called non-core samples . This approach
allowed the reduction of noise in subtype-defining sam-
ples, and thus a higher consistency of the resulting
subtypes defining the ground truth for downstream
analyses. The stability of the obtained clusters was
assessed under different perturbations of the processing
pipeline (different parameters and clustering methods)
to ensure that the results were not simple artefacts
(see Supplementary material, Supplementary methods
and results). A multiclass linear discriminant (LDA)
[22] was trained on core samples with meta-genes as
variables to assign new samples to one of the sub-
types. Minimal gene sets characteristic to each subtype
were identified using ElasticNet [23] on gene-level
data.

In order to validate the existence of subtypes (and
their independence on data selection) and the mod-
elling choices in subtype discovery, we applied the
same subtyping procedure (including parameters) to the
validation collection. The clusters identified in the val-
idation collection were put in correspondence with the
subtypes in the training set by LDA predictions and
correlations of subtype-specific moderated t statistic
[24] values, corresponding to the gene-wise compar-
ison of the respective subtype with the other subtypes
(one-versus-all comparison). A simple classifier appli-
cation would have led the validation samples to be
classified as one of the subtypes, but it would have not
informed us of possible over-fitting of the data in the
discovery procedure.

Subtype characterization
If not specified differently, all the reported p values
were adjusted for multiple hypothesis testing, using
the Benjamini–Hochberg procedure. Significance level
was set at 0.1. Pathway analysis for each set of
gene modules was carried out using the Database
for Annotation, Visualization and Integrated Discov-
ery (DAVID) [25]. Gene set enrichment analysis of
gene signatures was performed using the mygsea2
tool, in each subtype and normal samples, on aver-
age expression-ordered median-centred lists of genes.
Differential expression analysis was performed using
limma [24] and sign test using BSDA [26]. The
Cox proportional hazards model was used to anal-
yse the prognostic value of interquartile range (IQR)-
standardized values of meta-genes, for overall survival
(OS), relapse-free survival (RFS) and survival after
relapse (SAR), stratified by dataset. The Wald test was
used to assess the global significance of the models.
Pairwise differences in survival were assessed using the
log-rank test. For subtype comparison, the survival was
truncated at 7 years. Subtype enrichment for clinical or
molecular markers was assessed by the Fisher test to
the baseline, defined as the proportion of the marker in
the whole dataset. Morphological pattern differences
were assessed pairwise by Fisher test.

Histology
The identified subtypes were characterized histologi-
cally in terms of six different architectural patterns:
complex tubular; solid/trabecular; mucinous; papillary;
desmoplastic; and serrated (Figure 4A), which were
called dominant or secondary depending on their pres-
ence in the histology slides (for details on immunohis-
tochemistry, see Supplementary material, Supplemen-
tary methods and results).

Results

Gene modules and subtype definition
We identified 54 gene modules, reproducible across
all datasets in the discovery collection, comprising
658 genes from an initial list of 3025 identified
as the most variable. The assignment of genes to
gene modules and gene module clusters is listed in
Table S1 (see Supplementary material); meta-gene
expression profiles for the discovery set are shown in
Figure 1A; and between meta-gene correlations in
Figure S1C (see Supplementary material). Based on
gene modules, we identified five major subtypes:
surface crypt-like (A), lower crypt-like (B), CIMP-H-
like (C), mesenchymal (D) and mixed (E), totalling 765
samples (69% of discovery data; see Supplementary
material, Supplementary methods and results).

Subtype reproducibility in an independent
validation set
In the validation set of 720 CRC samples we identified
a set of subtypes comprising 602 samples (83.6%
of the validation set) and associated them with our
discovery subtypes using the subtype classifier (see
Supplementary material, Table S2) and correlations
of subtype-specific patterns based on moderated t
statistic (see Supplementary material, Table S3). All
five major subtypes reappeared in the validation set,
confirming the robustness of our approach. Figure S2
(see Supplementary material) presents gene expression
profiles of both discovery and validation sets. Two
notable differences were observed: (i) subtype B in the
validation set was split into two subgroups (B1, B2),
as observed in the discovery set too, but only at lower
pruning height; (ii) another cluster passed the minimal
size criteria, corresponding to the small subtype (F)
which, in the discovery set, was not considered for
further characterization because of small sample size.
Validation of other subtype characteristics (to the extent
of available information) is described in each of the
respective sections.

Subtypes are characterized by distinct biological
components
We set out to assign biological labels to gene modules
that define the subtypes (Table 1; see also Supple-
mentary material, Table S1). Of the 54 meta-genes,
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Figure 1. Meta-gene expression pattern in subtypes, connected with prognostic effect of subtypes and meta-genes, in the discovery set.
(A) Two heat maps clustering normal (left) and CRC (right) samples (columns) and meta-genes (rows). Colours represent decreased (blue)
or increased (red) meta-gene expression relative to their medians. Normal samples were clustered independently on meta-genes centred
to CRC meta-gene medians. For comparative purposes, ordering of meta-genes in normal samples is imposed to correspond to that of CRC
samples. White horizontal lines denote eight unsupervised clusters of meta-genes, each assigned a colour bar on the left; meta-genes not
belonging to a cluster have no colour bar. Names of the meta-genes corresponding to gene modules with gene–gene correlations in normal
samples comparable to those in cancer samples are marked red (see Supplementary material, Figure S1D). (B) Effect of inter-quartile range
(IQR) standardized expression of meta-genes on RFS, OS and SAR. Points represent estimated hazard ratio (HR), bars represent 95% CI.
Bold lines represent effects significant at 5% without adjustment for multiple hypothesis testing; red lines represent effects significant
at FDR < 10%; details are provided in Table S6 (see Supplementary material). (C) Kaplan–Meier plots for RFS, OS and SAR, with HR for
significant pairwise comparisons (p values adjusted for FDR). Numbers below x axes represent number of patients at risk at selected time
points.

41 could be further grouped into eight gene module
clusters; 13 meta-genes remained ungrouped, each pos-
sibly representing a distinct biological motif. Pathway
analysis characterized five of eight gene module clus-
ters by the following biological motifs: chromosome

20q (cluster 2), proliferation (cluster 3), EMT/stroma
(cluster 5) and immune response (clusters 7 and 8).
Literature searching identified biological motifs asso-
ciated with other gene modules. We labelled cluster 1
as GDC (genes differentially expressed in CRC), as
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Table 1. Biological identification of gene modules

Cluster name
Number of

genes

Pathway analysis result
(number of overlapping

genes, p value) OR description
based on literature search Selected genes

1. GDC 27 Genes involved in differentiation of colon
crypt and/or whose expression was
reported to be affected in colorectal cancer
and/or with prognostic effect in CRC

Intestinal differentiation genes: CDX2[45], IHH[46],
VAV3[47], ASCL2[35], PLAGL2[48]

Genes reported altered in colorectal cancer with
prognostic effect: PITX2[49], DDC [50], PRLR[51],
SPINK1[52]

Other genes connected to CRC:
GGH –connected to CIMP+ phenotype [53]
NR1I2–connected to chemoresistance [54]

2. Chromosome 20q
genes

33 Chromosome 20 (26 genes, 9.2E-34) Other, non-20q genes: TP53RK , ANO9, NEU1, CLDN3,
PRSS8

3. Proliferation 83 Cell cycle (36 genes, 3.0E-33)
Mitosis (26 genes, 1.4E-29)
Chromosome (26 genes, 2.5E-17)
DNA metabolic process (20 genes, 4.9E-10)
Lipid synthesis (4 genes, 5.0E-2)

Mitotic checkpoint kinases: BUB1, BUB1B
Cyclins: CCNA2, CCNB2 Centromere proteins: CENPA,

CENPE , CENPN
Kinesins: KIF11, KIF23, KIF4A
Topoisomerase II (TOP2A)
Cell division cycle 2 CDC2

4. Colon crypt markers
(secretory cells)

16 AGR2[55], AGR3, MUC2, SPINK4[56], RETNLB[57],
REG4[58]

5. EMT/stroma 310 Extracellular region part (90 genes) 2.7E-36
Cell adhesion (57 genes) 1.2E-17
Extracellular matrix (44 genes) 5.3E-30
Collagen (16 genes) 1.2E-15
EGF-like domain (26 genes) 1.6E-12
Cell motion (33 genes) 7.2E-8
Blood vessel development (25 genes) 1.1E-8
Growth factor binding (6 genes) 6.0E-5
Frizzled related (5 genes) 6.7E-3
Cell junction organization (7 genes) 1.8E-2
WNT receptor signalling pathway (8 genes)

1.4E-1

Inhibitors of β-catenin-dependent canonical WNT:
SFRP1, SFRP2, SFRP4, DKK3, FZD1,7 , PRICKLE1, NXN

Mesenchymal markers: N-cadherin, OB cadherin, SPARC ,
DDR2

EMT inducers(TFs): SNAI2, ZEB1, ZEB2, TWIST1, CDH11
ECM remodelling and invasion: MMP14, VIM ECM

proteins: fibronectin 1, collagens
Angiogenesis: PLAT , PLAU, NRP1, NRP2, THBS1, THBS2,

THBS4
TGFs, their receptors and binding proteins: IGF1, IGFBP5,

IGFBP7 ,TGFB, LTBP1, LTBP2, PDGFRA, PDGFRB

6. Unidentified 14 DUSP1, EGR2, SERPINE1
7 and 8. Immune

response
103 Immune response (42 genes) 2.0E-28

Positive regulation of immune system process
(16 genes) 4.0E-9

Antigen processing and presentation via MHC
class II (6 genes) 7.5E-5

Defence response (31 genes) 3.3E-17
Chemokine signalling pathway (9 genes)

2.2E-3
Lymphocyte activation (11 genes) 2.1E-5
Regulation of programmed cell death

(14 genes) 2.1E-2

Cytokines: CCL3, CXCL5, CXCL9,CXCL10, CXCL11, SPP1,
LTB

MHC class II: HLA-DMB, HLA-DPA1, HLA-DRA, CD74
MHC class I: HLA-F , TAP1, TAP2
Anti-apoptotic: BCL2A1, CD74, BIRC3, IFI6, TNFAIP3,

TNFAIP3
Apoptotic: STAT1, XAF1
Interferon-induced proteins: IFI30, IFI16, IFI44, IFI16,

IFIH1, IFIT3

Cluster-unassigned meta-genes with colon crypt cell markers (enterocytes/top of the crypt)
Meta-gene 105 6 Top of the crypt genes FAM55A, FAM55D, MUC12 and CEACAM7[59],

SLC26A2[59], SLC26A3[59]
Meta-gene 144 5 Enterocytes, goblet cells markers LOC644844, NGEF , HEPH, KRT20[59], MUC20[59]
Cluster-unassigned meta-genes associated with chromosomal location 0
Meta-gene 81 7 Chromosome X (7 genes) 1.1E-8 CXorf15, EIF1AX , HDHD1A, MED14, PNPLA4, SCML1,

SMC1A
Meta-gene 97 6 Chromosome 20p (5 genes) 5.0E-11 CDC25B, CSNK2A1, MRPS26, PTPRA, RP5-1022P6.2,

SNRPB
Meta-gene 84 7 Chromosome 8 (7 genes) 5.4E-9 AGPAT5, FDFT1, GTF2E2, LONRF1, MTUS1, VPS37A,

ZNF395
Other cluster-unassigned meta-genes
Meta-gene 141 5 EREG AK3L1, ARID3A, EREG, LDLRAD3, ZBTB10
Meta-gene 112 6 Lipid synthesis (4 genes) 5.0E-2 DHCR7 , FASN, FGFBP1, HMGCS1, IDI1, PCSK9
Meta-gene 95 6 Homeobox genes HOXA10, HOXA11, HOXA13, HOXA5, HOXA7 , HOXA9
Meta-gene 124 5 Metallothioneins MT1E , MT1F , MT1G, MT1M, MT1X
Meta-gene 131 5 Disulphide bonds (5 genes) 1.7E-02 CXCL5, IL6, MMP1, MMP3, PTGS2
Meta-gene 143 5 Unidentified DUSP5, ERRFI1, KLF6, MXD1, PLAUR
Meta-gene 80 7 Regulation of RNA metabolic process

(6 genes) 4.9E-2
ATF3, C8orf4, FOS, JUNB, NR4A1, SIK1, ZFP36

Meta-gene 71 8 Gut development (3 genes) 3.5E-2 CCL11, CH25H, EDNRB, F2RL2, FOXF1, FOXF2, PCDH18,
WNT5A
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Table 2. Subtype-specific minimal gene set as identified by Elastic net
Minimal gene sets specifying a subtype

Subtype
Up-regulated from
population mean

Down-regulated from
population mean

A. Surface crypt-like ADTRP , B3GNT7 , CLCA1, MUC2, NR3C2, PADI2, RETNLB, STYK1 CHI3L1, FNDC1, TIMP3, SULF1
B. Lower crypt-like CCDC113, CDHR1, FARP1, GPSM2, GRM8, HNF4A, IHH, KCNK5,

KIAA0226L, MYRIP , PLAGL2, PRR15, QPRT , RNF43, RPS6KA3,
SLC5A6, TP53RK , TSPAN6, VAV3, YAE1D1

ALOX5, BASP1, CREB3L1, CXCR4,
EPB41L3, FSCN1, GFPT2, GPX8,
ITPRIP , KCNMA1, KCTD12,MT1E ,
RARRES3, RNASE1, SGK1, SOCS3

C. CIMP-H-like ANP32E , EGLN3, IDO1, PLK2, RAB27B, RARRES3, RPL22L1, TFAP2A ATP9A, C10orf99, CXCL14, KIAA0226L
D. Mesenchymal ANK2, BOC , C7 , CRYAB, DCHS1, DDR2, GEM, PRICKLE1, TAGLN HOOK1, RBM47
E. Mixed CEACAM6, CXCL5, HSD11B1, IL1B, IL6, MRPS31, PI15, RAP2A, UQCC AGR3, RAB27B, REG4

it consisted of a number of genes significantly associ-
ated with CRC. The analysis of pairwise intra-gene
module correlations in normal samples of both dis-
covery and validation set identified as cancer-specific
gene modules of chromosome 20q, several immune
response, EMT/stroma and GDC gene modules, home-
obox genes and gut development (see Supplementary
material, Figure S1D). The relationship between sub-
types and meta-genes is illustrated by the heat map
(Figure 1A), in which the major molecular motifs
and their role in subtype definition stand out. Table
S4 (see Supplementary material) contains median sub-
type values per meta-gene and the results of differ-
ential meta-gene expression testing between subtypes.
Subtypes are not determined by individual biologi-
cal components but each of them contributes to the
molecular identity of the subtypes. The EMT/stroma
cluster stands out in subtypes A + B (low expression)
and D + E (high expression), while subtype C notably
contained a high expression of immunity-associated
cluster. High expression of meta-genes representing
upper colon crypt cells in subtypes A and B, cor-
related with serrated and papillary (A) and complex
tubular (B) morphological patterns (see below). Given
the enterocyte-like morphology and retained polarity
of the neoplastic cells in these patterns, they are con-
sidered as well differentiated. Subtype C is associated
with the mucinous phenotype. Interestingly, subtypes
A and C show high expression of metallothioneins,
subtypes C and E show high expression of the home-
obox gene module, while subtypes E and B strongly
express a gene module containing the EREG gene
(Table 1). The high expression of chromosome 20q
cluster in subtype B was correlated with a significantly
higher copy number gain/amplification of all of 20q in
this subtype (see Supplementary material, Figure S8).
The low expression of lipid synthesis genes is striking
for subtype D and low expression of the gut devel-
opment gene module for subtype C. A refined picture
of differences is given by a quantitative comparison
of (meta-)gene expression between subtype pairs (see
Supplementary material, Tables S4 and S5, Figure S4).
For each subtype we also identified a minimum set
of characteristic genes (Table 2; for more details, see
Supplementary material, Supplementary methods and
results).

Normal colon mucosa in the context of subtypes
When applied to the 64 normal samples, the LDA clas-
sifier assigned them all to subtype A, with posterior
probability > 0.99, supporting the observation that A is
well differentiated and closest to normal colonic epithe-
lium in terms of gene expression pattern. For valida-
tion, we analysed five public datasets comprising 205
profiles of normal/adenoma/carcinoma samples. Most
of the normal and adenoma samples were classified by
LDA as subtype A (74.5% of 51 and 69.0% of 71,
respectively) or subtype B (28.2% and 21.6%, respec-
tively), confirming subtype A as the most normal-like.
The 80 carcinoma samples were distributed over all
subtypes (26.2% A, 30.0% B, 11.3% C, 18.7% D and
13.8% E).

Subtypes and patient survival
We assessed whether subtypes differ in survival, as a
general read-out of biological significance, and then
tested the association of each meta-gene with progno-
sis, using the complete discovery set of 1113 patients
(Figure 1B-C see also Supplementary material, Table
S6). Kaplan–Meier curves for RFS, OS, SAR, haz-
ard ratios (HRs) and p values of pairwise differences
between subtypes are shown in Figure 1C. The results
indicate that subtypes C and D are associated with poor
OS. For subtype D, this is primarily due to early relapse
correlated with high expression of EMT genes and low
expression of proliferation-associated genes. For sub-
type C it is the result of short SAR, correlated with
low expression of GDC, top colon crypt, EREG and
Chr 20q genes and high expression of meta-gene 126
(see Supplementary material, Table S1). For subtype E
the trend towards poorer OS and RFS was not statisti-
cally significant, although borderline significant poorer
SAR was found relative to subtype B. Subtypes A and
B had better prognosis than D for all three endpoints,
although for OS in subtype A this was not significant.

The analysis of clinical and molecular markers
(below) showed that subtype C is enriched for MSI
tumours and BRAF mutant tumours, the latter present
also in subtype D. The literature indicates that MSI
is associated with better RFS, while BRAF mutation
is an indicator of worse SAR [27]. To analyse how
these two contradictory components affect survival in
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Table 3. Result of additive multivariate Cox proportional hazards model, with subtype, BRAF mutation, MSI and stagea

Variable RFS HR p OS HR p SAR HR p

A 0.906 0.760 1.381 0.390 1.726 0.180
C 0.940 0.850 1.560 0.220 3.675 0.0022∗

D 1.688 0.0055∗ 2.161 0.0011∗ 1.906 0.014∗

E 1.506 0.210 2.201 0.035∗ 2.046 0.075
BRAFm 1.633 0.085 2.472 0.0034∗ 3.361 0.00072∗

MSI 0.478 0.044∗ 0.275 0.004∗ 0.356 0.036∗

Stage 3 0.770 0.190 0.943 0.820 1.780 0.062∗

aBaseline is subtype B, MSS, BRAF wt and Stage 2.
∗Variables significant in the model.
Hazard ratios (HR) for relapse-free survival (RFS), overall survival (OS) and survival after relapse (SAR).

subtypes, we built a multivariate Cox proportional
hazard model with subtype, stage, BRAF and MSI
(Table 3; see also Supplementary material, Table S6).
Subtype C remained significantly associated with poor
SAR, even after the adjustment for BRAF , MSI and
stage, but not with RFS. Subtypes B and D remained
significantly prognostic for RFS, OS and SAR. No
equivalent survival data were available for the datasets
in the validation series, hence these observations could
not be validated.

Colorectal stem cell and Wnt signatures within
subtypes
We investigated the association of subtypes with
Wnt [28–32], putative colon cancer stem cell (CSC)
[33–35] signatures, and two signatures specific for
upper and lower colon crypt compartments [36], using
gene set enrichment analysis (Figure 2; see also Sup-
plementary material, Table S7). Subtypes B and E
highly expressed canonical Wnt signalling target sig-
natures. Subtypes A and D and also normal samples,
however, showed low expression of these signatures.
This was in concordance with the differences in β-
catenin nuclear immunoreactivity at the invasion front
(IF; see Supplementary material, Figure S9 and Sup-
plementary methods and results). Subtypes B and E
showed the highest percentages, while subtypes A and
D showed significantly lower percentages of the β-
catenin-positive nuclei. Subtype C exhibited almost no
β-catenin nuclear immunoreactivity at the IF. We anal-
ysed CSC signatures derived from low colon crypt
compartment cells that had been identified either by a
Wnt reporter construct TOP GFP or by high surface
expression of EphB2 . Subtypes D and E expressed
both TOP GFP and EphB2 -derived CSC signatures,
while subtype B mainly expressed only the TOP GFP
signature (Figure 2).

Subtypes complement clinical and molecular
markers
An important goal of this study was to assess how
our molecular subtypes complement known clinical
variables and molecular markers. We found that MSI,
BRAF mutation status, site, mucinous histology and
expression of p53 were significantly associated with
various subtypes (Figure 3), but not tumour stage,

age, gender, SMAD4 or PIK3CA mutations (see Sup-
plementary material, Figure S5A). Subtype D was
not significantly enriched for any of the tested vari-
ables except for the BRAF mutated signature and
possibly represents a mixture of tumours that have
the EMT/stroma signature in common. KRAS mutants
occurred in all subtypes (see Supplementary mate-
rial, Figure S5C), supporting the emerging notion that
KRAS -mutated CRC are substantially heterogeneous
[5,6,37], the oncogenic role of KRAS varying per spe-
cific mutation and the molecular background of the
tumour in which it occurs [38]. Subtype C expressed
the BRAF mutant signature we identified earlier [6]
(87.0%), a CIMP-H signature ([11], Figure 2), and
its characteristics (enrichment for MSI, right side and
mucinous histology) corresponded with those of the
previously reported CIMP-H phenotype [9,11,39,40]
and hypermutated tumours [13]. Regarding the lat-
ter, subtype C had a similar low frequency of copy
number variations (see Supplementary material, Figure
S7). The distribution of MSI status, stage, age, gen-
der, grade and site over the subtypes in the validation
set followed the same patterns established in the dis-
covery set [cf Figures 3 and S5B (see Supplementary
material)]. A classification tree, trained with a combi-
nation of available clinical and molecular markers, did
not identify our subtypes (see Supplementary material,
Figure S5D), indicating that gene expression patterns
reveal a layer of heterogeneity that goes beyond con-
ventional CRC classification approaches.

Histological characteristics of subtypes
To study whether or not our molecular subtypes
are associated with histological patterns, we exam-
ined haematoxylin and eosin (H&E)-stained paraffin
sections of a randomly selected subset of each subtype
(23, 31, 31, 29 and 19 cases for subtypes A, B, C, D and
E, respectively). In attempting to match histological
morphotypes to molecular subtypes, architectural pat-
terns were used, as illustrated in Figure 4A, rather than
the recognized WHO classification of CRCs [1]. Not
surprisingly, given intratumour heterogeneity, none of
the tumours had a single pattern. However, the preva-
lent patterns showed appreciable differences between
the subgroups (Figure 4B, C; see also Supplementary
material, Figure S6). In subtype A, the serrated pattern
was most frequent, followed by the papillary pattern; in

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
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Figure 2. Subtypes and biological motifs. Subtype-specific fingerprints of biological motifs, represented either as mean values of gene set
enrichment scores of gene sets from corresponding gene modules (EMT/stroma, immune, secretory cells, proliferation, GDC, chromosome
20q, top of the crypt—meta105 and meta144) or composed gene set enrichment scores of particular signatures (canonical Wnt targets,
CSC-TopGFP, CSC-EphB2, colon crypt bottom and CIMP-H). The gene set enrichment scores represent whether the genes from the gene set
show statistically significant enrichment between the down-regulated (negative scores, light blue area) or up regulated (positive scores)
genes of a given subtype; details of score calculation can be found in the Supplementary material (Supplementary methods and results
and Table S7.).

Figure 3. Clinical and mutational characterization of subtypes. Columns represent variables and rows subtypes. Horizontal bar plots
represent proportions of the corresponding variable in each of the subtypes and non-core samples. Non-core samples were tested as one
group to ensure that they did not share a common characteristic that would set them apart. Numbers in brackets adjacent to subtype
name represent overall number of samples in the subtype. Under the title of each variable we denote the percentage representing baseline
proportion in the population, with available information, and N denotes the number of patients for which the information on the respective
feature was available. Bars in red represent significant enrichment and bars in blue significant depletion of a feature in the subtype in
comparison to baseline, at the 5% significance level. Adjacent to each bar is the percentage of samples in the subtype with the specific
feature and in brackets the overall number of samples in the subtype with the information available. We can read that, for instance,
subtype C, comprising 154 samples, is enriched for microsatellite-unstable (MSI) tumours, where 60.4% of 91 samples with available
information are MSI.

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
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Figure 4. Morphological CRC patterns. (A) morphological CRC patterns scored in subtypes. (B, C) Distribution of dominant (B) and secondary
(C) histological patterns in subtypes. Columns represent subtypes and widths are proportional to subtype frequency (numbers of samples
in each subtype); rows represent dominant (B) or secondary (C) patterns and heights are proportional to pattern frequency. Boxes show
adjusted p values of pairwise statistical testing of morphological pattern distribution between subtypes.

subtypes B and E, complex tubular dominated; in sub-
type C the solid pattern dominated, with mucinous as
the second; most striking was the presence of a strong
stromal reaction in subtype D.

Discussion

Our approach, using gene modules on a large panel of
samples, allowed us to identify five main CRC gene
expression subtypes (Table 4). It is relevant to note
that subtyping can be performed on FFPE tissues, an
important prerequisite for wide clinical applications.
An example is the hypermutated group identified in
the TCGA study by whole exome sequencing [13], but
according to our data also by gene expression profiling
on routinely processed tissues (CIMP-H-like subtype).

The combination of gene expression, clinical, muta-
tional, survival and morphological data contributes new
insight into the heterogeneity of CRC. While the vali-
dation confirmed the robustness of our findings across
different platforms (ALMAC versus Affymetrix), sam-
ple preparation methods (FFPE versus fresh-frozen)
and dataset collections, larger datasets are necessary
to assess and characterize the relevance of lower fre-
quency subtypes (eg F, or further segregation of B
into B1 and B2). Our data indicate that several major
biological processes are key determinants of a com-
plex subtype structure of CRC. Therefore our sub-
types defined by gene expression do not substitute
but complement groups defined by current clinico-
pathological variables and molecular markers. Notably,
morphological subclassification of CRC has clearly
reached its limits, given the often striking intratumour

 2013 Swiss Institute of Bioinformatics. Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2013; 231: 63–76
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heterogeneity, which made us use a (primary and
secondary) architectural pattern approach rather than
the canonized histological subtypes (WHO). Profiling
of microdissected patterns within a single tumour might
reveal molecular mechanisms responsible for these
morphotypes. This additional heterogeneity within the
subtypes may reflect tumour polyclonality, similar to
breast cancer [41]. Ultimately, aggregating clinical,
pathological and further detailed molecular character-
istics (including CNV, miRNA and methylation) will
contribute to a more detailed perception of CRC hetero-
geneity and it is likely that more subtypes will emerge.
This, however, would need more detailed molecular
annotation of larger clinically well documented CRCs.

A striking association was found between the stro-
mal subtype D and the EMT signature. The previously
discovered EMT [12] also emerged from our analy-
sis as the largest cluster of meta-genes associated with
poor RFS (subtype D). Our histological assessment
suggests that the EMT signature is the reflection of
a strong mesenchymal stromal reaction, and this his-
tological characteristic deserves to be tested for its
capacity to predict resistance to therapy, in view of its
strong association with poor survival. Studies requiring
high tumour cell content as sample inclusion criteria
(eg [13]) could miss this poor prognosis subtype. Iden-
tification of this subtype in cell lines or xenograft mod-
els is less straightforward and would benefit from the
analysis of gene expression patterns between microdis-
sected tumour and stromal cells.

EMT, however important, only partly explains
CRC heterogeneity, as even subtypes with similar
expression of EMT-associated genes (A–C or D–E)
differ in survival, mutational, clinical and gene expres-
sion characteristics. Additional biological components,
such as differentiation, immune response, proliferation,
chromosome 20q or cluster of genes deregulated in
CRCs, are important co-determinants that underpin a
need for further subdivision of CRCs. The findings
from the analysis of CSC and WNT signatures support
the recently suggested hypothesis that the colon stem
cell signature under the condition of silenced canon-
ical WNT targets is associated with higher risk of
recurrence (subtype D) [33]. This is consistent with
subtype D showing a significantly lower percentage
of β-catenin-positive nuclei than subtype B, with its
Wnt-associated gene expression and better survival.

MSI tumours represent a subclass in most unsu-
pervised analyses and can be recognized at the gene
expression level [42]. The more recent gene expression
studies [14,15] suggest that MSI and BRAF share dis-
tinct gene expression patterns. Subtype C was enriched
for both MSI and BRAF mutants and had one of the
best outcomes for RFS, but the worse outcome in SAR,
in concordance with previously reported results [43].
Subtype C retained its poor SAR prognostic value, even
in the population of MSS and BRAF wild-type patients.
Our data suggest that subtype C represents tumours
with a common biology and a gene expression pattern
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that might best characterize a group of tumours resis-
tant to chemotherapy, once metastatic. In this sense,
our work not only agrees with the current known mark-
ers (BRAF mutation status and MSI) but clearly adds
new insight, putting together these previously unre-
lated clusters into one biologically meaningful group.
This observation is in line with recently published
work [6].

Our observations show that gene expression profil-
ing contributes substantially to our insight into CRC
heterogeneity in confirming and complementing data
from sequencing, CNV and promoter methylation
analysis. Our subtypes can be further functionally
interrogated for driving oncogenes/events by in vitro
functional screens. High-risk subtypes D and C might
contribute to therapeutic decision making in either
adjuvant or metastatic settings. Retrospective analysis
of clinical trial series may identify drug sensitivity
associated with particular subtypes, and might open
new treatment optimization strategies to be tested in
clinical trials with stratified cohorts, similar to the
I-SPY2 trial for breast cancer [44].

In conclusion, our unsupervised approach using
gene modules resulted in the identification of dis-
tinct molecularly defined CRC subtypes, which adds
a new layer of complexity to CRC heterogeneity and
opens new opportunities for understanding the dis-
ease. The challenge is now to assimilate conventional
and these new molecular approaches into a compre-
hensive consensus classification, which might then be
used in further clinical studies for patient stratification
and experimental studies to further elucidate mecha-
nisms involved in the development and progression
of CRC.
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SUPPLEMENTARY MATERIAL ON THE INTERNET
The following supplementary material may be found in the online version of this article:

Supplementary methods and results (contains a further table and two further figures)

Figure S1. (A) Consensus clustering and similarity dendrogram of samples. (B) Subtype projection in the four-dimensional space of LDA axes.
(C) Heat map matrix of pairwise meta-gene Fisher Z-transformed Pearson pairwise correlations. (D) Box plots of intra gene module pairwise
gene–gene Pearson correlations in normal samples in both discovery and validation sets

Figure S2. Validation of meta-gene expression pattern of subtypes represented by heat maps

Figure S3. (A) Heat map representing validation of gene expression patterns of subtypes. (B) Pairwise Fisher Z-transformed correlations of
meta-genes in validation set. (C) Box plots representing medians of pairwise gene–gene Pearson correlations in the validation datasets

Figure S4. Expression of top five down- and top five up regulated genes from all pairwise comparisons between subtypes

Figure S5. (A) Other clinical and mutational markers tested and found non-significant between subtypes. (B) Clinical variables tested in the
clusters of the validation test. (C) Distribution of significant clinical and mutational markers across subtypes. (D) Classification tree trained on
clinical variables

Figure S6. Graphs of joined distribution of dominant vsersus secondary patterns in each of the subtypes

Figure S7. Heat map of CNV profiles of 154 samples from the discovery set, randomly ordered inside each of the subtypes

Figure S8. Result of hypothesis testing of median log-scale copy number estimates of chromosome 20 of subtype B versus all other subtypes

Figure S9. Distribution of β-catenin immunoreactivity of the invasion front counts between subtypes
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Table S1. Detailed description of gene module members and detailed results of meta-gene expression tests pairwise between subtypes and of
subtypes to meta-gene medians

Table S2. Multiclass linear discriminant (LDA) subtype assignment of samples from validation set

Table S3. Correlations of subtype-specific gene expression profiles (1 versus all moderated t test statistics) when accounting for subtype F in the
training set

Table S4. Detailed results of meta-gene expression tests pairwise between subtypes and of subtypes to meta-gene medians

Table S5. Detailed results of pairwise comparisons of differentially expressed gene between subtypes

Table S6. Detailed results of Cox proportional hazards models for RFS, OS and SAR for subtype, stage, MSI and BRAF and for meta-genes

Table S7. Results of GSEA comparison of enrichment tested signatures in individual subtypes and normal samples
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