429 research outputs found

    Parameter identification and state estimation for linear systems

    Get PDF
    Parameter identification and state estimation for linear system

    Effect of equivalent salt deposit density on flashover voltage of contaminated insulator energized by HVDC

    Get PDF
    In Malaysia, the demand for electric power is increasing day by day due to more consumption of power in the industrial sector. Recently, the high voltage DC transmission lines are under construction near the coastal environments for transmitting the power to the all states of Malaysia. Therefore, there is a concern about the reliability of these systems especially under adverse environmental conditions due to sea salt spray contamination. This reliability of this contaminated insulator can be improved through its performance studies. For this performance study, an analytical expression between flashover voltage and ESDD of the contaminated insulator has been proposed using Dimensional Analysis technique. The results obtained from the analytical expression are compared with the experimental results and in close agreement are foun

    Autotract: Automatic cleaning and tracking of fibers

    Get PDF
    We propose a new tool named Autotract to automate fiber tracking in diffusion tensor imaging (DTI). Autotract uses prior knowledge from a source DTI and a set of corresponding fiber bundles to extract new fibers for a target DTI. Autotract starts by aligning both DTIs and uses the source fibers as seed points to initialize a tractography algorithm. We enforce similarity between the propagated source fibers and automatically traced fibers by computing metrics such as fiber length and fiber distance between the bundles. By analyzing these metrics, individual fiber tracts can be pruned. As a result, we show that both bundles have similar characteristics. Additionally, we compare the automatically traced fibers against bundles previously generated and validated in the target DTI by an expert. This work is motivated by medical applications in which known bundles of fiber tracts in the human brain need to be analyzed for multiple datasets

    The Key Criteria in Deciding to Tender for Construction Projects

    Get PDF
    Planning for a construction project is a formidable task which involves a huge investment with multiple stakeholders such as clients, consultants, and contractors. A tender is a submission of a technical, administrative, and contractual material made by a potential contractor in response to an invitation to tender by the project client. Established contractors normally realise the importance of doing initial research before committing themselves to enter the tender. Normally, tender pre-qualification is a strict process. A low-quality tender submitted due to problems such as insufficient time and incomplete tender documents normally lead to tender rejection by the client. Thus, this research aimed to provide a strategy to help the contractors in deciding whether they should or should not submit a tender at the initial tendering decision phase. The literature review was focused on the key factors identified in influencing the decision-making process and in the final part, the initial conceptual model was establishe

    Incorporating 3-dimensional models in online articles

    Get PDF
    Introduction The aims of this article are to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Methods Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in.obj,.ply,.stl, or.vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. Results All registered 3D surface models in this study were saved in.vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article's online version for viewing and downloading using the reader's software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader's software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. Conclusions When submitting manuscripts, authors can now upload 3D models that will allow readers to interact with or download them. Such interaction with 3D models in online articles now will give readers and authors better understanding and visualization of the results

    The UNC-Wisconsin rhesus macaque neurodevelopment database: A structural MRI and DTI database of early postnatal development

    Get PDF
    Rhesus macaques are commonly used as a translational animal model in neuroimaging and neurodevelopmental research. In this report, we present longitudinal data from both structural and diffusion MRI images generated on a cohort of 34 typically developing monkeys from 2 weeks to 36 months of age. All images have been manually skull stripped and are being made freely available via an online repository for use by the research community

    White matter fiber-based analysis of T1w/T2w ratio map

    Get PDF
    Purpose: To develop, test, evaluate and apply a novel tool for the white matter fiber-based analysis of T1w/T2w ratio maps quantifying myelin content. Background: The cerebral white matter in the human brain develops from a mostly non-myelinated state to a nearly fully mature white matter myelination within the first few years of life. High resolution T1w/T2w ratio maps are believed to be effective in quantitatively estimating myelin content on a voxel-wise basis. We propose the use of a fiber-tract-based analysis of such T1w/T2w ratio data, as it allows us to separate fiber bundles that a common regional analysis imprecisely groups together, and to associate effects to specific tracts rather than large, broad regions. Methods: We developed an intuitive, open source tool to facilitate such fiber-based studies of T1w/T2w ratio maps. Via its Graphical User Interface (GUI) the tool is accessible to non-technical users. The framework uses calibrated T1w/T2w ratio maps and a prior fiber atlas as an input to generate profiles of T1w/T2w values. The resulting fiber profiles are used in a statistical analysis that performs along-tract functional statistical analysis. We applied this approach to a preliminary study of early brain development in neonates. Results: We developed an open-source tool for the fiber based analysis of T1w/T2w ratio maps and tested it in a study of brain development
    corecore