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Abstract

Introduction—The aims of this article were to introduce the capability to view and interact with 

3-dimensional (3D) surface models in online publications, and to describe how to prepare surface 

models for such online 3D visualizations.

Methods—Three-dimensional image analysis methods include image acquisition, construction of 

surface models, registration in a common coordinate system, visualization of overlays, and 

quantification of changes. Cone-beam computed tomography scans were acquired as volumetric 

images that can be visualized as 3D projected images or used to construct polygonal meshes or 

surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans 

can be labeled with color (3D volumetric label maps), and then the scans are registered in a 

common coordinate system using a target region as the reference. The registered 3D volumetric 

label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification 

of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface 

distances.

Results—All registered 3D surface models in this study were saved in .vtk file format and 

loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface 

models constructed from cone-beam computed tomography images using 2D and 3D figures. The 
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3D surface models are available in the article’s online version for viewing and downloading using 

the reader’s software of choice. These 3D graphic displays are represented in the print version as 

2D snapshots. Overlays and color-coded distance maps can be displayed using the reader’s 

software of choice, allowing graphic assessment of the location and direction of changes or 

morphologic differences relative to the structure of reference. The interpretation of 3D overlays 

and quantitative color-coded maps requires basic knowledge of 3D image analysis.

Conclusions—When submitting manuscripts, authors can now upload 3D models that will 

allow readers to interact with or download them. Such interaction with 3D models in online 

articles now will give readers and authors better understanding and visualization of the results.

More effective and rational clinical decision making for orthodontic and orthognathic 

surgery patients requires careful 3-dimensional (3D) image-analysis techniques. Advanced 

applications of 3D imaging techniques, including virtual models from cone-beam computed 

tomography (CBCT), stereo-photometry, and intraoral or indirect scanners, can be used for 

applications in dentistry that now allow superimpositions for populational and individual 

longitudinal assessments. The 3D superimpositions provide assessments of growth, changes 

with treatment, stability evaluations, improved diagnoses of asymmetry, tooth morphologies 

and relative positions, quantitative and qualitative analyses of skeletal and tooth 

displacements, and temporomandibular joint evaluations, among other applications.1 

Interpretation of the superimposition results depends on the structure of reference used for 

registration. It is important that the clinician be prepared and familiar with the technology to 

prevent misunderstandings and incorrect interpretations of the images.

Advances in our field have relied on 3D data for new discoveries. However, when 

publishing those new discoveries, articles were up to now limited to featuring 2-dimensional 

(2D) projected images of the 3D models. Since September 2014, thanks to a collaborative 

effort between Elsevier and Kitware SAS (Lyon, France), the American Journal of 

Orthodontics and Dentofacial Orthopedics has given readers the exciting capability to view 

and interact with publications’ 3D models on a variety of devices, including mobile phones, 

tablets, laptops, and desktops. The 3D interactivity in online Elsevier articles empowers 

authors to optimally showcase their research and enables readers to more deeply and 

efficiently understand the findings presented.2 Readers can see data sets in all views in 3D 

space by panning, rotating, and zooming in or out on models of interest, applying color 

settings, and downloading the 3D data sets.

This article introduces the capability to view and interact with publications’ 3D volumetric 

images and surface models and describes the steps to prepare the surface models for such 

online 3D visualizations. Specifically, we present image analysis procedures for 3D 

visualization and quantification of populational and longitudinal changes.

MATERIAL AND METHODS

Three-dimensional image analysis procedures for orthodontic, craniofacial, and 

maxillofacial surgery applications include (1) image acquisition, (2) construction of 3D 

volumetric files, (3) image registration, and (4) visual analytics with graphic display of 3D 
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morphological variability and changes. Once these procedures are performed, the 3D files 

can be saved and uploaded for 3D visualization in online publications.

For acquisition of 3D diagnostic records, diagnosis of maxillomandibular discrepancies is 

based on data coming from different sources: clinical examinations, 3D photographs, CBCT, 

CT, magnetic resonance images, and digital dental models. Systems for computer-assisted 

diagnosis must integrate different records to characterize the diagnosis and formulate the 

treatment plan.3 Images from CBCT, CT, and magnetic resonance imaging are acquired as 

volumetric 3D images (saved in file formats such as DICOM, gipl, or nrrd). These 

volumetric images can be visualized as cross-sectional slices or 3D projected images (3D 

renderings) or can be used to construct polygonal meshes or surfaces of specific anatomic 

structures of interest. The Elsevier 3D viewer includes capabilities to visualize the 3D 

images as cross-sectional slices, 3D renderings, 3D polygonal meshes, or solid surfaces. To 

simplify the description of image analysis procedures, we will specifically describe 3D 

analysis of images acquired with CBCT, since it is now widely used in our field. The same 

image analysis procedures are applicable and can be generalized for images acquired with 

any 3D imaging modality.

For construction of 3D volumetric files that label with color the anatomic structures of 

interest, the CBCT scans (DICOM files) can be opened and visualized in any 3D image 

analysis software of choice. Examples are 3DMDvultus (3DMD, Atlanta, Ga),4 Maxilim 

(Medicim, Mechelen, Belgium),5 Dolphin Imaging (Dolphin Imaging & Management 

Solutions, Chatsworth, Calif),6 In-Vivo Dental (Anatomage, San Jose, Calif),7 SimPlant 

OMS or Mimics (Materialise, Leuven, Belgium),8 or open-source tools such as TurtleSeg,9 

ITK-SNAP,10 and 3D Slicer.11 In a procedure known as image segmentation, we identify 

and delineate the anatomic structures of interest in the CBCT scan to obtain a 3D 

representation of the hard and soft tissues (3D volumetric label map files). Even though 

image segmentation has been a field of active research for many decades, it remains one of 

the most time-consuming steps in image processing. A major challenge with segmentation is 

that hard and soft tissues from CBCT images have no corresponding Hounsfield units. One 

CBCT image taken from a subject may have different intensity levels for bone, cartilage, 

and soft tissues. No standard segmentation method can be expected to work equally well for 

all tasks. Many commercial softwares incorporate an intensity thresholding algorithm for 

their segmentation. Although this often works well for thick and dense bones such as the 

mandible, it often fails for thin bones such as the condyles and the labial surfaces of the 

teeth. The morphology and position of the condyles and the internal surfaces of the ramus 

and maxilla are critical for careful diagnosis. Then precise segmentation and representation 

of these anatomic regions are important. To best capture the facial anatomy, our method of 

choice for the segmentation procedures is ITK-SNAP10 software, which has received 

continuous support from the National Institutes for Health (NIH), Bethesda, Maryland, for 

further open-source software development. ITK-SNAP was developed, based on the NIH 

Visualization Tool Kit (VTK) and Insight Tool Kit (ITK), as part of the NIH Roadmap 

Initiative for National Centers of Biomedical Computing. The semiautomatic segmentation 

procedures in ITK-SNAP use active contour methods to compute feature images based on 

the CBCT images’ gray level intensities and boundaries. ITK-SNAP is more versatile than 

other open and commercial softwares because it allows the adjustment of the parameters for 
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automatic detection of intensities and boundaries and allows user interactive editing of 

contours. For example, on a laptop computer equipped with a 2.5 GHz processor and a 1 GB 

graphic card, the initial segmentation step typically takes about 15 minutes. Manual 

postprocessing of the segmentation usually takes longer, up to several hours (separation of 

the maxillary and mandibular teeth can be particularly tedious).

After segmentation, for a single 1-time point image, the 3D volumetric label map can be 

saved as a 3D triangular or polygonal mesh (3D surface model), in .obj, .ply, .vtk, or .U3D 

file format. Then it can be uploaded in an online publication and visualized in the Elsevier 

3D viewer.

For longitudinal CBCT scans or scans of a group of patients, further image analysis 

procedures are required and described below.

The next image analysis procedure consists of registering the scans and their respective 3D 

volumetric label maps in a common coordinate system using a target region as the reference. 

Different types of registrations will lead to different interpretations of the results. The 

registration procedures can use, as options for reference, landmarks, surface models, or 

voxel gray intensity. Currently, both commercial and open-source softwares allow these 

different options for craniomaxillofacial registration (https://sites.google.com/a/umich.edu/

dentistry-image-computing).12 The process of registration involves computing 

transformations. Transformation is a mathematical operation that applies a matrix to move 

the points of a 3D image or surface model in multiple planes and degrees of freedom in 3D 

space. Longitudinal CBCT scans acquired at different times can be registered by computing 

the differences of the head position relative to a stable anatomic structure of reference. The 

image registration procedure that computes the translational (anteroposterior, transverse, and 

vertical) and rotational displacements (pitch, roll, and yaw) is known as rigid registration.13 

There are also image registration procedures that compute differences in scale (size changes 

with growth or treatment, known as affine registration) or shape (nonrigid registration). The 

challenges of using nonrigid registration for clinical studies are that shape integrity is not 

preserved, and the 3D models can be deformed.14 To prevent distorting or morphing of the 

images, nonrigid registration can be used to compute transformations by considering scale 

and shape differences, and then applying only the rigid movements (rotation and translation) 

to preserve the actual scale and shape features.15,16

The image registration procedures that our research group has found to provide the most 

reliable results consist of 2 steps.

1. Establishing a common coordinate system across subjects for group comparisons, 

not based on a single line or plane, is essential to allow group comparisons and 

consistent measurements across subjects. Quantifications of the anteroposterior, 

vertical, and transverse directions of changes require consistent orientations of the 

heads of all subjects and image acquisitions using natural head position, 

intracranial reference planes,17 or minisensors for recording the 3D head position.18

2. For voxel-based registrations for longitudinal assessments, the major strength of 

this method is that registration does not depend on how precisely the 3D volumetric 
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label maps represent the anatomic truth or on the location of a limited number of 

landmarks. For voxel-based registration methods that use the 3D volumetric label 

maps as the input of the region of reference, these multiplanar label maps should be 

extended slightly (1–2 voxels) beyond the actual bone boundaries to provide the 

complex gray-level information needed for the automatic detection of the bone 

boundaries during the voxel-based registration. Importantly, the 3D segmentation 

of the anatomic structures of reference for the registration are not “clean” 3D 

surface models and are used only as references to mask anatomic structures that 

change with growth and treatment. Voxel-based registration methods actually 

compare voxel by voxel the gray-level values in 2 CBCT images to calculate the 

rotation and translation parameters between them. Not all voxel-based registrations 

are similar in methodology and accuracy, because they can use different structures 

of reference and different numbers of iterations (eg, the software can run for 1 

minute and compute 100 attempts of best voxel match, or run for 10 minutes and 

compute 1000 comparisons of best fit among thousands of voxels). After 

registration, the 3D volumetric label maps should be further edited for finer 

definitions of the patient’s actual bony anatomic contours.

It is also important to understand that the clinical implications that can be derived from 3D 

registrations and superimpositions depend on the structures selected as references for 

registration. Registration on different regions of reference will lead to different 

interpretations of the results. We have developed a novel sequence of fully automated voxel-

wise rigid registrations at the cranial base (for overall facial assessments relative to cranial 

structures that complete their growth early in childhood)16 and regionally (to assess 

maxillary and mandibular bone remodeling).19,20 All image registration procedures 

described above can be performed in the Transforms and CMF registration modules in Slicer 

open-source software (www.slicer.org,11; video tutorials 1 to 3 available at http://

www.youtube.com/user/DCBIA).21 They were initially developed as part of the National 

Alliance of Medical Image Computing (NIH Roadmap for Medical Research) and have been 

widely used internationally.

For visual analytics with graphic display of 3D morphologic variability and changes over 

time, after registration, the registered 3D volumetric label maps can then be saved as 3D 

triangular or polygonal meshes (3D surface models) in .obj, .ply, .vtk., .stl, or .U3D file 

formats and can be used for (1) overlays with contrasting opaque or semitransparent colors, 

(2) 2D linear distances between landmarks, and (3) 3D linear distances graphically displayed 

with color-coded maps computed using closest or corresponding surface points. The 

overlays provide visual qualitative assessment of the location and direction of changes or 

morphologic differences. Quantitative assessments can provide distances and angles 

between landmarks and planes in the surface models or color-coded surface distance maps 

graphically displayed on the surface models.

Landmark-based measurements can cause errors related to landmark identification.22 

Locating 3D landmarks on complex curving structures is not a trivial problem for 

representation of the components of the craniofacial form.23 As Bookstein24 noted, there is a 
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lack of literature about suitable operational definitions for the landmarks in the 3 planes of 

space (coronal, sagittal, and axial).

Three-dimensional surface distances computed at the vertices of the triangular meshes can 

be computed as closest points between noncorrespondent surface meshes or as homologous 

or correspondent points between correspondent surface meshes. The computation of the 

surface distances can be stored as color-coded distances in the .obj, .ply, or .vtk file format 

that can be uploaded in the online publications. Currently, the visualization of the color-

coded maps on the Elsevier 3D viewer appears faded, and users cannot adjust the range of 

the colors in the color-coded map yet, but readers can download the surface models that 

store the color-coded maps and then upload those models in another software of choice, such 

as Paraview (http://www.paraview.org)25 or the ShapePopulation-Viewer module in Slicer 

4.411 (tutorial available at http://www.youtube.com/user/DCBIA).21

Closest-point distances measure the closest distances between the vertices of the triangular 

meshes in 2 surfaces, not corresponding distances between anatomic points on 2 or more 

longitudinally obtained models. This standard analysis is currently used by most commercial 

and academic softwares but does not map corresponding surfaces based in anatomic 

geometry and usually underestimates large rotational and translational movements. Closest-

point distances can be displayed with color-coded maps, as proposed by Gerig et al.26

Shape correspondence, as computed with the SPHARM-PDM module,27 was developed as 

part of the National Alliance of Medical Image Computing (NIH Roadmap for Medical 

Research) and has been adapted for use with CBCT images of the craniofacial 

complex.28–32 The SPHARM-PDM software (version 1.12; open source, http://

www.nitrc.org/projects/spharm-pdm) computes point-based surface models, where all 

models have the same numbers of triangular meshes and vertices in corresponding 

(homologous) locations.33 This software is now distributed as the SPHARM-PDM extension 

module in the Slicer 4.4.11 Corresponding surface distances and vectors can then be 

calculated with the “model to model distance” extension module and graphically displayed 

in the Slicer “shape population viewer” extension module (http://www.youtube.com/user/

DCBIA; video 5).21

Once the 3D image analysis procedures have been completed, the 3D registered surface 

models can be saved as .obj, .ply, .U3D, or .vtk files and uploaded by authors as they submit 

their manuscripts in the AJO-DO Elsevier Web site. Authors can submit each 3D model in 

3D figures as separate zipped files that are uploaded for online articles via the “3D models” 

submission category. The current Elsevier submission system recommends a 3D model size 

of 50 to 100 MB before zipping. Authors can indicate in their cover letters whether the 

manuscript should also be considered as an original article for the printed publication, in 

which all the 2D figures can be printed and in which the figure legends and descriptions for 

the 3D figures can refer the readers to the online versions. The 3D visualization provided by 

the Elsevier 3D viewer in the online articles combines local (WebGL) and remote 

(ParaViewWeb) rendering techniques. The Web browser and the size of the 3D data are 

analyzed to ensure that users are given optimal support and can interact with the 3D models 

in real time. The remote rendering option is based on ParaViewWeb, a collaborative Web 
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interface for 3D interaction built on the Para-View open-source client/server architecture.25 

With this technology, 3D rendering is performed remotely to enable users with limited 

computing resources to interact with large scenes. For local rendering, the WebGL viewer 

calls upon the client’s graphics processing unit to render 3D scenes directly in a Web 

browser. The resulting hybrid viewer enables Elsevier subscribers to surpass the limitations 

of current digital publications and interact with data in a meaningful way. Readers can see 

data sets in 3 views; can pan, rotate, and zoom in or out on models of interest; can apply 

different settings such as color; can load multiple registered files (that can be best visualized 

in the current Elsevier 3D viewer one at a time); can download the data set; and can 

visualize semitransparent overlays and analytical color maps in their image analysis 

software of choice.

RESULT

Assessments of 3D changes with visual analytic graphics are displayed and presented as 

illustrations in this article in 2 formats (2D figures and 3D files available online) to facilitate 

the reader’s understanding.

For online versions, all registered 3D surface models were saved as multiple models in .vtk 

file format; they are designed to be loaded in the Elsevier 3D viewer and are now available 

for readers to interact with them. The 2D figures show snapshots or perspective views of the 

different visualizations that readers can now obtain from the 3D figures when they load the 

3D files in the Elsevier 3D viewer or download the 3D files to visualize them in their 

software of choice. The visualization of 3D superimpositions in the current Web-based 

Elsevier 3D viewer is hampered by the inability to adjust opacity when 2 or more 3D models 

are loaded simultaneously, and the color-coded maps appear faded in 1 tone because the 

color-coded surface distances stored in the 3D file cannot be displayed with different ranges 

of colors. This makes it difficult for readers to interpret and understand the results of the 

superimpositions using the current Elsevier 3D viewer. The Elsevier 3D viewer does allow 

readers to download the 3D surface models for visualization in the reader’s image analysis 

software of choice.11,21

Figures 1 through 5 and Supplementary Figures 1 through 4 show the 3D surface models of 

a patient who was followed during his growth spurt before treatment at 2 time points, 1 year 

6 months apart (T1, 11.5 years; T2, 13 years). Figure 6 and Supplementary Figure 5 show 

3D surface models before and after an adult patient’s surgical correction with bimaxillary 

advancement, mandibular counterclockwise rotation, and genioplasty.

Figures 1 through 6 are 2D snapshot examples of the 3D Supplementary Figures 1 through 

5. Each 3D figure includes multiple files that can be visualized in the Elsevier 3D viewer or 

downloaded for visualization in your image analysis software of choice. Your image 

analysis software may have more image analysis functionalities than the current Elsevier 3D 

viewer, as shown in the 2D figures taken in open-source software (3D Slicer).11 The 

Elsevier 3D viewer currently allows the reader to adjust files A and B in each 3D 

illustration, changing colors for visualization. In addition, readers will be able to rotate, pan, 

and zoom the models, facilitating the visualization and interpretation of the image analysis 
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results. For 3D illustrations C and D (color-coded maps), the reader can analyze the 

differences between the times, but in the Elsevier 3D viewer currently available, readers 

cannot modify the color-coded ranges yet.

Figure 1 in 2 dimensions and Supplementary Figure 1 in 3 dimensions show the results of 

the cranial base registration of a growing patient. The 2D figure (Fig 1) shows snapshots of 

the semitransparent overlays and the closest point color-coded maps. The 3D figure 

(Supplementary Fig 1) contains 3 files: A and B are the T1 and T2 surface models, and C is a 

file that stores the computed color-coded surface distances.

Figure 2 in 2 dimensions and Supplementary Figure 2 in 3 dimensions show the results of 

the mandibular regional registration of a growing patient. The 2D figure (Fig 2) shows 

snapshots of the semitransparent overlays, and Figure 2, A, shows the cranial base overlay 

just for comparison with the changes observed with the mandibular regional registration in 

Figure 2, B. The 3D figure (Supplementary Fig 2) contains 3 files: A and B are the T1 and 

T2 surface models, and C is a file that stores the computed color-coded surface distances.

Figures 3 and 4 are 2D snapshots of different quantitative methods of mandibular ramus and 

condylar growth with the 3D surface distances computed at the vertices of the triangular 

meshes. Figure 3 shows how distances between points located on the model surfaces can be 

automatically calculated by different methods, and Figure 4 shows the color-coded surface 

maps of those measured point-to-point distances. Supplementary Figure 3 is a 3D figure that 

contains 4 models: A and B are the T1 and T2 surface models, C is a file that stores the 

computed closest point color-coded surface distances, and D is a surface model that stores 

the computed corresponding point color-coded surface distances.

Figure 5 (2D) and Supplementary Figure 4 (3D) exemplify the regional registration with the 

maxilla as the reference, and Figure 6 (2D) and Supplementary Figure 5 (3D) show an adult 

surgical correction.

DISCUSSION

We describe new capabilities for publishing 3D data and displaying the 3D assessments in 

an online publication. Although 2D figures of the 3D skeletal and dental changes with 

growth and treatment provide perspective views, 2D figures are oversimplified 

representations of the 3D morphology. Three-dimensional models are “flattened” into static 

2D images, significantly reducing the value of the author’s analysis and the reader’s ability 

to interact with the content. Since 3D models are built for 3D evaluations and the virtual 

generation claims for innovations, there is no reason not to use them for publications. 

Elsevier authors now can show their 3D data, and any ScienceDirect users or readers can 

view and interact with these author-provided 3D data sets on many devices with no 

additional plug-in required. These devices include smart phones, tablets, laptops and desktop 

computers.2

For the online article versions, 3D file formats saved (eg, .vtk files, which were originally 

designed to be loaded in Slicer11 or Paraview25 software) will then be available for readers 

to interact with them in the Elsevier 3D viewer software. For scientific publications, we 
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define unambiguously the 3D content being published and strict subsets of the formats that 

give good expressibility of the 3D results and findings; these are easy to implement with 

various softwares.

Interpretation of the 3D morphology changes depends on the structure of the reference used 

for registration, and it is important that clinicians be prepared and familiar with the 

technology to prevent misunderstandings and incorrect interpretations of the 3D images. We 

expect that readers will have enough background in 3D evaluation to load and understand 

the results from the superimposition of the registered files when they download them for 

visualization in their software of choice. During this transitional phase, while authors and 

readers become familiar with the Elsevier 3D viewer, authors should consider having both 

illustrations (3D and 2D), keeping 3D models available for readers and 2D figures taken 

from the correspondent 3D models, or mixing 3D and 2D images to make sure that all 

information regarding a study is properly shared, and regions and landmarks of importance 

are highlighted.

Authors and readers must also understand how to benefit from the current 3D viewer 

provided by Elsevier and how to handle 3D file formats (particularly if they contain 2 or 

more surface models) or store computed distances between them. One key point that 

deserves exploration is the challenge of a large number of 3D file formats that are not 

standardized. Whereas the Elsevier viewer currently supports .obj, .ply, .U3D, and .vtk files, 

different softwares might not handle the legal variations of these file formats consistently. 

When each author submitting a manuscript uploads a 3D figure, it is helpful for readers and 

for the printed version of the article that authors also include screenshots and conventional 

2D figures of their 3D visualizations as standard figures. This is important to ensure that the 

3D visualizations deliver the information the authors present in their methods and results.

CONCLUSIONS

When submitting manuscripts, Elsevier authors can now upload 3D models that will allow 

readers to interact with and download them. Interaction with 3D models in online articles 

now will give readers improved understanding and visualization of the results. Such 

interactions with 3D models require that readers know how to interpret the 3D 

superimposition information that is relative on the areas of reference used for registration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Two-dimensional figure showing the results of the cranial base superimposition at T1 and 

T2 of the surface models of a growing patient: A, semitransparent overlays; B, closed point 

color-coded surface distance maps quantifying the mandibular displacement or bone 

remodeling relative to the cranial base registration.
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Fig 2. 
Two-dimensional figure showing the semitransparent overlays of 2 time points of a patient 

during the growth spurt: A, mandibular anterior inferior displacement relative to the cranial 

base; B, mandibular registration, with the T2 model registered on T1 using the mandible as 

the reference, showing posterior and superior condylar growth.
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Fig 3. 
Two-dimensional figure showing the distances between landmarks placed in the T1 and T2 

surface models registered using the mandible as the reference. The distances between 

landmarks can be automatically calculated by different methods: closest point and 

corresponding (homologous) point. The distances between landmarks are displayed. Points 1 

(most superior point in the condyle), 2 (most posterior point in the condyle), and 4 (point in 

the mid-distance between gonion and point 1) located on the T1 surface model (green) have 

corresponding points in the T2 surface model (red). Note in the overlay that the closest 

points for points 1, 2, and 4 in the T1 surface model are points 2, 3, and 5 placed over the T2 

surface. Comparing the distances between corresponding points (1–1, 4.92 mm; 2–2, 4.82 

mm; 4–4, 3.62 mm) to the closest points (1–2, 4.54 mm; 2–3, 1.09 mm; 4–5, 1.64 mm), it is 

notable that the distance between the 2 closest points placed over the 2 models is often 

smaller than the corresponding points’ distance.
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Fig 4. 
Two-dimensional figure showing: A, the right mandibular ramus and condyle 

semitransparent overlay, and B–E, quantitative color-coded maps of the distances measured 

in Figure 3. In B–E, 2 types of color-coded maps are shown: the closest distances between 

surface points are shown with 5 colors in B and with 7 colors in C to better define the 

regional measurements; the distances between corresponding points in the surface models 

are shown in D, and the vectors of the growth direction are shown in E.
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Fig 5. 
Two-dimensional figure showing the maxillary surface models, where the T2 model was 

registered on T1 using the maxilla as the reference: A, semitransparent overlays; B, closest-

point surface distances color-coded maps between T1 and T2.
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Fig 6. 
Two-dimensional figure showing the surface models at 2 times of a patient who received 

surgical correction. The T2 model was registered over T1 using the cranial base as the 

reference. A, Semi-transparent overlays; B, closest-point surface distances color-coded map 

between T1 and T2, shown with 7 colors to better define the regional measurements.
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