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1. INTRODUCTION

1,1 Statement of the Problem

This discussion is concerned with the problems of identifying the
parameters and estimating the states of multiple input, multiple output,
linear, time-invariant systems. The emphasis of the paper is not on
obtaining expressions for optimal estimators which are difficult to
implement or which rely on very restrictive conditions. Instead, various
structural features of linear systems are utilized to obtain estimators
which are computationally practical, have few restrictive conditions, and
have satisfactory convergence behavior.

The need for system identification and state estimation is clear,
To effectively predict the behavior of a system it is necessary to have
an accurate model, TIf the intent is to track or control the state of a
system it is also necessary to have a good idea of what the state is at
each time instant., Much of systems theory can be applied only after
these estimation problems are solved.

Although it would be desirable to have the ability to model and
control arbitrary systems there are limitations to what can be done.
Aside from the obvious limitation that not all systems can be controlled,
one of the basic limitations is lack of information. This lack of
information may take many forms— the statistical nature of the random
phenomena involved may not be completely understood, the structural form
of the system to be modeled may not be known, or the observations avail-
able may be insufficient to describe the system. To fill the gaps in
information assumptions must be made, and the goodness of these assump-
tions will be reflected in the accuracy of the estimates.

Restricting discussion to linear, time-invariant systems is not as
severe a limitation as it might seem. Many nonlinear systems can be
analyzed effectively by linearizing about various regions of operation.
Also, time variations may be sufficiently slow to allow the system to be
adequately represented by a succession of fixed models with each model
holding during a finite time interval. The develdped mathematical frame-
work available for the analysis of linear systems and the resulting

simplifications make the choice of this structural form desirable. The



purpose of this paper is to explore various aspects of the structure of
multiple input, multiple output, linear systems and to utilize the

findings in the design of effective state and parameter estimators.

1.2 Previous Work

Much work has already been done in the areas of parameter and state
estimation., At the foundation of the current state space approach to
estimation and system description are the results of Kalman [Refs, 10,18].
He presented a linear state estimator which is optimal from the standpoint
of minimizing the variance of the estimation error. The conditions for
which the filter was derived are rather restrictive-— the system model
must be known, the statistics of the initial state must be known, and
the density functions of the various random processes must be Gaussian
and have known statistics., Various papers have been published dealing
with the accuracy and limitations of the Kalman filter, while other
papers have considered ways of extending the results.

Among the earlier efforts to extend Kalman's results are the work
of Magill [Ref. 3] and Rauch [Ref. 6]. Magill considered the problem in
which the system model is one of a finite set of possible models. The
extension of his theory even to systems where parameters are limited to
finite intervals is not computationally practical. Rauch addressed the
problemof estimating the states of a system with random parameters whose
statistics are known. Though an interesting problem it does not answer
the question of what to do when a system with constant parameters is not
known exactly.

Two different approaches have been taken to eliminate the
inaccuracies of the Kalman filter which result from modeling errors.
Farison [Refs, 4,5] and Kopp and Orford [Ref. 11] proposed an extended
Kalman filter in which the uncertain system parameters are included as
additional state elements and the inherenfly nonlinear equations are
linearized about the expected value of this augmented state vector.

The various conditions required for applicability of this solution are
both restrictive and vague and, except for the special cases in which

the nonlinearity disappears, results obtained using this method have



not been completely favorable, Schmidt [Refs. 13,14] and Neal [Ref, 22]
proposed the addition of terms to the gain of the Kalmaun filter to
account for system uncertainties and thereby prevent divergence of the
filter, Although some good results have been obtained using this
technique, it is essentially an ad hoc approach which may or may not
work, depending on the size of the terms which are added to the gain.
Several papers have been concerned with the determination of the
system model from input and output observations, without reference to
the estimation of the system state. The papers of Saridis and Stein
[Ref, 21] and Wong and Polak [Ref. 26] present several techniques for
the identification of single input, single output systems of known size.
The identification work of Gopinath [Ref. 157 is the most general,
dealing with multiple input, multiple output systems of unknown size,
However, Gopinath's identification procedure does not take full advantage
of the structure available and is therefore not as efficient or flexible

as possible,

1.3 Outline of New Results

The new results presented in this dissertation are as follows:

1) Two new methods, an algorithm and a direct procedure, for
determining the minimal realization of a linear, time invariant system
from input/output observations are derived.

2) The structure of the minimal realization obtained by use of
the direct procedure is displayed,

3) A method is presented for obtaining the minimal realization of
a continuous system without differentiating the inputs and outputs.

4) Consistent identifiers are presented which estimate the system
parameters from noisy input/output observations for various conditions
on the system, the input, and the noise.

5) The problem of obtaining a constant gain observer with arbitrary
error dynamics is solved for a discrete system without recourse to
canonical forms.

6) A bound is derived for the steady state mean square estimation

error resulting from use of a constant gain state estimator. A procedure



which utilizes this bound is presented for choosing a constant gain

estimator with satisfactory error dynamics and steady state error.



2. PROBLEM FORMULATION

2.1 Modeling the Process

A function £ from A to B (f: A - B) 1is a mapping of each
element of the set A into one and only one element of the set B, The
function £ may be specified in tabular form by listing all pairs (a,b)
such that acA and b = f(a) € B, or it may be specified by an algebraic
expression associating aeA and beB. An algebraic representation does
not always exist, but when it does it is usually far more useful and
practical than the tabular representation, Sometimes it is possible to
deduce the algebraic representation from all or part of the tabular
representation, depending on how much of the structure of the algebraic
relationship is known.

These concepts are important when considering the state space
representation of a dynamic system X. Suppose T 1is the time span of
interest, U 1is the space of possible inputs, X 1is the space of possible
system states, @ is the set of transition functions, H is the space of
output functions, and Y 1is the output space, Then I can be viewed as
a function in the above sense and is specified by ZI: (T,U0,X,%,H) - Y,
Restricting attention to linear, time invariant systems the input and

output can be related by the equations

x(k+1) Fx(k) + Gu(k)
y(k) = Hx(k) (2.1)

for a discrete system (k takes on integer values) or by the equations

x(t) = Fx(t) + Gu(t)

y(t) Hx(t) (2.2)

for a continuous system, where

= nX1l state vector
= pXl output vector
= rXl input vector
nXn state transition matrix

= nXr input matrix

=R > I B~ T
0

= pXn output matrix
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and F, G, and H are time independent. To avoid repetition subsequent
discussion shall be limited to the time invariant, discrete system of
(2.1), indicating only the important results and differences for the
continuous system of (2.,2) in section 3.1.5.

The triplet (F,G,H) forms an internal description of I.
Equations (2.1) constitute an algebraic description of the system, In
functional notation we have %L: (K,U,X) - Y, where K is the set of
discrete time instants of interest.

Suppose an internal description of % 1is not available, but a
record of input-output pairs [u(k), y(k)] is. Since the specification
of the state at some initial time instant ko and the knowledge of all
inputs for k =2 ko will determine the outputs y(k) for k 2 ko accord-
ing to (2.1), this record of input-output pairs will be part of the
tabular representation of ZXZ. We shall call the sequence of [u(k), y(k)]
an external description of L — the term "external description" is often
used to refer only to the special case of an impulse response, which seems
to be an overly restrictive use of the term. The question now arises
whether we can obtain an internal description from the external description.
When the observations of input/output are corrupted by noise we would like
to obtain an estimate of the internal description and state of Z., These

topics are the subject of Chapters 3 and 4.

2.2 Minimal Realization of the Svystem

The internal description of a discrete dynamic system XL which is
characterized by (2.1) is not unique. It is well known that if (Fl’Gl’
Hl) constitutes an internal description or realization of X then so

will the triplet (FZ,GZ,Hz) where

-1
Fz = TFlT
G2 = TG1
-1
= 2.
H2 HlT 2.3)

The two realizations are said to be equivalent under the transformation T,

indicated symbolically



=S

T
(F156y,Hy) = (F,,G,0H)

Equivalent realizations are not the only kind. The number of states
associated with a given realization is the number of elements of the
state vector =x(k) and it is called the dimension of the realization.
Two realizations of the same system can have different dimensions — they

will have the same input/output behavior but they will not be equivalent,

Definition

A realization (F,G,H) of £ is minimal if its dimension is less

than or equal to the dimension of any other realization of I,

if (F,G,H) 1is an n-dimensional realization of a system having
inputs and p outputs then the dimensions of F,G, and H are nXn,
nXr, and pxn, respectively,

Definition

An n-dimensional realization of £ is completely observable iff it

satisfies the rank condition

— .
H
HF
ey . =n,
HFn-l
Definition

An n-dimensional realization of L 1is completely reachable iff it
satisfies the rank condition

PlGFG . . .F ) =n.

Lemma 2.1

If p(H) = m the realization of L is completely observable iff

(1
HF
P =n
il




Proof of Lemma 2.1

Obviously if the above rank condition is satisfied the system is

completely observable., To show the necessity of this rank condition we

introduce the following proposition.

Proposition 2.1

If

‘o - — p—
H H
HF HF

P = Pl . =t
urd ardtl

then

HF

pl. =t for all s =2 q .

] HFS.

Proof of Proposition 2.1

The fact that the rank is not increased by the additional rows HFq-l_1
implies

HFq+1 C span(H, HF, ..., HFq)

where the span of (H, HF, ..., HFq) is the set of all linear combinations

of the rows of H,HF,...,HF®. From this it follows that

HF® C span (H,HF,.,.sHFq) for all s = q,

so that the additional rows HFQ+1, HFq+2,...,HFS will not change the
rank and
g T
HF
Pl . =t for all s 2 q.
R:iad
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Returning to the proof of the lemma, if

p—

1

H

HF

el . =t <n
HFn-m‘

then, since p(H) = m , there exists a q<n-m such that

#F% C span (u,HF,...,5F9 70

(if not each set of p rows HFl, i € n-m, would contribute a row
not in span (H,HF,...,HFl_l) and

[
HF
Pl -
—
S, -

would have to be

n).
Then
BE¥ HFr
P . = P N
| qpd-L L urd

and it follows that

-
H

o| HF et <n
HFn—l

which contradicts the observability of the system, Therefore, if the
system is completely observable



— - e ‘
H
HF 4
IS I = n
grit M

This completes the proof of Lemma 2.1(1)

Lemma 2,2

If p(G) = g the realization of Y 1is completely reachable iff
p[G FG ... F ‘e]

The proof of this lemma is similar to that of lemma 2.1.

(2)

Properties of Minimal Realizations

1) All minimal realizations of L are equivalent.

2) Any minimal realization fo X 1is completely reachable and completely
observable,

3) If a realization of 5 1is completely reachable and completely
observable it is a minimal realization.

Since we cannot hope to identify states which are unobservable and
since for all practical purposes there is no point in specifying more states
than can be controlled, we shall be satisfied to obtain a minimal dimension
realization of ¥ from its external description. Since the minimal

realizations are similar any ome will suffice.

2.3 Separation of the Parameter Identifier and State Estimator

When noise free observations of the inputs and outputs of a system
satisfying (2.1) are available it is possible, as shown in section 3.1,
to obtain a realization of the completely observable and completely
reachable portion of the system and to determine the state associated with
this realization exactly. We shall deal only with finite dimensional
systems so that only a finite portion of the external description is
needed to yield the minimal realization.

If the input/output observations are corrupted by noise the problem

becomes one of estimation — we must estimate both the parameters and the

(1

Lemma 2.1 will be used in section 3.1 to reduce the number of output
observations needed to obtain a realization of the system.

(2)

Proofs of the properties appear in ref, [15].

10
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states, By manipulating (2.1) it is possible to obtain an expression
relating the realization and the inputs and outputs which does not
involve the state vector =x(k). No such capability exists for expressing
the state vector without involving the parameters since the state vector
is inherently parameter dependent by virtue of the difference equation.
These considerations suggest the possibility of breaking the problem

into two parts — obtaining an estimate of the parameters from the inputs
and outputs and using the estimated parameters together with the inputs

and outputs to estimate the state. This is shown diagramatically in

figure 2.1.
k PARAMET ~ ~ ~
uk) ER [F (k) ,8(k) ,H (k) ]
y(k) ESTIMATOR
STATE ﬁ(k/k)
= ESTIMATOR

Figure 2.1. Parameter and State Estimator for Constant, Linear,
Discrete System,

There are several advantages to this separation. By estimating the
parameters from only input/output observations the nonlinearities result-
ing from coupling between the parameter and state estimates is avoided in
this phase of the identification (the nonlinearities will appear in the
estimation of the state vector). Since the state estimator operates when
the system estimate is fixed or time varying, it is not necessary to
update the system estiﬁate after every observation — as the system estimate
converges to the true system description it is computationally practical
to update the model less frequently, It is often desired simply to obtain
a model of a given system without regard to its state so that using a
scheme in which the parameter estimate does not depend on the state
vector estimate precludes unnecessary computation.

Desirable features for the parameter and state estimators to have are
that

1) the estimators be computationally practical for a wide class of

noise statistics
11



2) the parameter estimator be consistent and have a satisfactory
convergence rate
3) the state estimator have a satisfactory bound for the steady

state error covariance,

It will be seen that the parameter estimators derived in Chapter 3 and

the state estimator of Chapter 4 have these features.

12



3. PARAMETER IDENTIFICATION

3.1 Noise Free Input/Output Observations

3,1.1 Direct Relation Between Input and OQutput

The system equations (2.1) can be written as

x(k)
[F G] u(k)}

Hx (k)

x(k+1)

(3.1)

y(k)

If H is the identity matrix y(k) = x(k) and the first of equations
(3.1) becomes

y(k)
} (3.2)

y(k+1) = [F G] [u(k)

which is a direct relation between the input and output- it does not have
the state vector =x(k) appearing explicitly. Using (3.2) we can obtain

[F,G] from the relation

y(k) . . . y(ktntr-1)
(3.3)

N
Z [y(tl) . . . y(ktntr)] = [F G]E
k=1 u(k) . . . u(ktotre-1)

Whenever the matrix multiplying [F G] in (3.3) has an inverse there

is a unique solution for [F G]. 1In the general case when the system is
completely observable (H is not necessarily the identity), it is possible
to obtain an expression similar to (3.2), involving the inputs, outputs,
and system parameters, but not the state vectors. Before giving the more
general expression (viz. eqn. (3.4)) which involves the selection of a set
of output observations, it is necessary to introduce the concept of the

selector matrix,

Definition
A selector matrix S is a k X 4 matrix (k < £) with the property
that when multiplying and 4 X m matrix A the resulting k X m matrix

SA consists of k of the rows of A ordered as they are in A.

The above definition implies that S = [Sij] will have the properties

) 8;3=0 or 1 Vi,j s



2) Vi there is one and only one value of j, ji’ such that

s;3 = 1
1Ji

3) §; <3y <. e o<y

Using the selector matrix we see that if a p X q matrix R has rank
r (r<p, r<gq) then there are two selector matrices SI’ an r X p

an r X q matrix, such that Sleg is nonsingular,
=1, and if r = p then S1 =1,

matrix, and SZ’

If r=q then 82
Notation
S(il, 12,‘. o o 5 im) shall be used to specify that selector matrix

which deletes the rows il, iz, o o o im from the matrix it multiplies.

For a completely observable system there exists a selector matrix

S such that

- 5 ¥ (k) ,
S y_y(etl) = [F R][ _ (3.4)
un‘k (k)
where
?E*(k) 2 [y () Y (ktl) . . .y (ktn*-1)]
_T

w0 & o v L o e ]

A
R=-FSS(pn* + 1, . . . , p(n*+1))Rn* + SS(1,2,...,p)Rn*
0 0 ’. @ & 0
HG 0 . . 0
HFG HG 0. . .0
R, &
n%
’*_
w2, .. m o0
Es
g1 HFG HG

n* = n-p(H)+1

14



The derivation of (3.4) using n instead of n* 1is given in ref. [15],
but for completeness and because of the differences in using n* the
derivation will be given,

From (3.1) we obtain by enumeration the equations
ES

y(k) = Hx(k)

y(ktl) = HFx(k) + HGu(k)

y(et2) = HFx(k) + HFGu(k) + HGu(k+l) (3.5)
y(etn*-1) = HFS L x(k) + HFY 2 Gu(k) + . . . + HGu(ktn*-2)

Utilizing the definitions of ;ﬁ*(k), En*(k), Rn* and letting S1 =
S(pn*+1, . . . , p(n*l)) equations (3.5) can be written in the

compact form

HF

(k) = : x(k) + San*un*(k) (3.6)

nk-1

HF

—. -

Now since the system is completely observable it follows from Lemma 2.1
and the comment following the definiton of a selector matrix that there

exists an n X n*p selector matrix S such that

- H
HF

S . = T is nonsingular. (3.7)

e

LHFI.I*_ 1

It can be assumed that the basis of the internal description is such that
T =1 since a change of basis will not effect the external description.

Multiplying (3.6) through by S under this assumption yields

15



SY_4 (k) = x(k) + SS,R_u (k) (3.8)

Using (3.1), (3.7), (3.8) and the definition of R and letting
S, = S8(1,2,...,p) we then obtain

2

8Y o (k+L) = x(kt1) + SS.R U (kt1)

= Fx(k) + Gu(k) + SS;R & . (k+1)

[~ n
H
HF
= F[SF . (k) - SSR_T (k)] + S . Gu(k)
%
— 1
+ 8S.R ju . (ktl)
= FSy_, (k) - FSS;R ,u_ (k) + SS,R u_ (k)
= FSy_, (k) + Ru_, (k)
which verifies equation (3.4).
Using (3.4) we have then
' —
_ _ s'o yn*(k)...yn*(k+n+rn*-1)
S[yn*(k+1) oo yn*(k+n+rn*)] = [F,R] + —Al_ _
%
0 IIrn* un*(k)... n*(k+n+rn 1)
(3.9
We can write (3.9) compactly as

SA_,(k+1) = [F RISB_, (k) (3.10)

where the correspondences are obvious. Note that S 1is a (rn* 4+ n) X
(r + p)n* selector matrix. A unique solution for [F,R] exists when-
ever SBn*(k) is nonsingular. For SBn*(k) to be nonsingular Bn*(k)

must have rank n + rn*,

16



Lemma 3,1

For any selector matrix

S ‘0

$ =t

| n*

if SBn*(k) is nonsingular the associated S satisfies the property that

- - 1
HF

e

S . =T (3.11)

n¥-1
HF

Ao

is nonsingular (where T can be taken as the identity matrix without

loss of generality).

Proof of Lemma 3.1

~ |
H O
HF
I 1. ls®r | N
g S F? pn¥* | "1 n% . | x(k)., .x(kinbrn*-1)
B (k) = —_ - - Y T 3 *a
n* 0 |Irn* 0 ' Irn% ) | un*(k)...un*(k+n+rn 1
n¥-1 -
L |
0| T
| -
ViRl
HF
. l x(k) . . . x(ktmbrnk-1)
= S SS.R —
: | 1 n* En*(k). o e un*(k+n+rn*-l)
n¥-1
HF
-__L.__:_.LI__-
L 0 | “rn*

Since the rank of a product of two matrices is less than or equal to the

rank of either factor

17



r-r—H —1| i
g | |
. |
PIRB (K] < pf S| | SS.R_,
n¥-1
I R I
L 0 | Irn* -

1f SBn*(k) is nomsingular p[SBn*(k)] = n + ro*. Therefore

SBn*(k) nonsingular implies that

B
HF
S .
K
HFn 1
e —

is nonsingular.

This completes the proof of Lemma 3.1

3.1.2 Algorithm for Determining a Minimal Realization

We shall now investigate various properties of the matrix Bn*(k)

given by a
Ynz(k) ynz(k+l) . ynz(k+nd+rn§ - 1)
Bawlk) =13 z " (3.12)
* * .
ns ung(k) unz(k+1) o e s unz(k+na+rna 1)

where o is an assumed minimal dimension of the system and does not
necessarily equal the true minimal dimension. This investigation leads
to an effective technique by means of which the true minimal dimension

of the system and the matrices S8 and [F,R] may be obtained.

Theorem 3.1

If the assumed minimal dimension of a system, n_, is greater than
the actual minimal dimension, n, then

< *
p[an(k)] n, + rn¥

18



Proof of Theorem 3.1

B 3
n:(k)

where S

= % *
1 S(pna + 1, pna + 2,

in later discussions let

1

[]>4

A
D_, (k) =

|
pny |
|
i

0

un*
a

e

San*
a

I
rn*
a

-

x(k)

k) . .

H K
HF HF
N e
x(k) . x(k+na-+rna 1)

‘ ng-l * n¥-1
HF ur 2

- o —
— . .-
un:(k) e o o o & ung(k-+na+rna 1)

.

, p(ng + 1)), For simplicity

ng-l
HF

-~

X (ktn +rn*-1)
a a

u *m
un*(k+na-+rna D

a

Since Cn* is nonsingular p[Bni(k)] = p[Dn*(k)]. Now,
a

*
p[Dnz(k)] < ok + p .

and

r-H —1
HF

* n¥-1
HFad

[x(k) . . . x(k+na+rn:-1)]

19
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HF
. o s e F- <
P [x(k) x(k-+na-+rna Dllsn n,
nz-l
[HE
Therefore,

< * < %
p[Dnz(k)] rna +n rna + na

and thus

%
D[Bng(k)] <mn_ + ¥ .

This completes the proof of Theorem 3.1.

Theorem 3.2

If the system % is completely observable and completely reachable
and the assumed minimal dimension, n_, equals the actual minimal

dimension, n, then for almost all input sequences {u(i)}

= %
p[Bng(k)] n, + ¥ .

Proof of Theorem 3.2

As in the proof of the preceding theorem we observe that

p[Bng(kH = p[Dn*(k)}] .

a
Now,
—:“H - [ ]
HF
. I x(k) . . . x(ktn +rn*-1)
a a
D_,(k) = 0
Ma | T (k T_, (ktn +ro¥-1)
* n¥-1 un*§ ) . e (KAng T
_HFa _‘—4 a
0 I
L ‘ rn*...J

20



Assuming the wu(i) are random variables with no concentrated probability
mass in the joint distribution, Lemma A2 of reference [15] implies that
xk) . . . . x(k+n+rn§-1)

a I %
un*(k) e e . unz(k+n+rna 1)

is nonsingular for almost all input sequences. Thus, since n,=n

%o
x(k) . . . . x(k--l—na--i-rna 1)

a 4 %o
unz(k) o e . unz(k--l-na+rna D)

will be nonsingular for almost all input sequences, Therefore,

HF |
P[D (k)] = p | O
a ' ng—l '
S
0 —T—Irn*
L [ a_j

Ea

/|

= rn* + .
s TP

Since the system is completely observable and n,=n

I—‘H '1

and

21



= x
D[Bng(k)] n, + ro¥ .

This completes the proof of Theorem 3.2.

Theorems 3.1 and 3.2 provide a means for determining the minimal
system dimension, an appropriate selector matrix, and the matrix
[F,R] for almost any input sequence when an upper bound on the actual
minimal dimension exists. If no upper bound on the actual minimal
dimension exists it is not possible to determine n with certainty;
more will be said about this after the procedure to be followed when an
upper bound does exist is presented. Before describing the procedure
for obtaining n, S, and [F,R] it is necessary to make the following
definitions.
Definition @

A matrix is said to be in row-echelon form if the first nonzero
element appearing in row i is a 1 in column ki and in column ki

the only nonzero element is the 1 in row 1i.

Any matrix can be put into a row-echelon form by repeatedly using
the elementary operations of multiplying rows by nonzero constants and

of adding multiples of rows to other rows.
Definition

A row-echelon form is normal if for all rows 1i,j containing
nonzero elements
k, <k, for i<ij
1 J
where ki’ kj are the columns containing the first nonzero elements

of rows 1 and j respectively.
Definition
If in obtaining a normal row-echelon form the restrictions that

1) wuntil no further eleminations are possible a multiple of row k

may be added to row 4 only to eliminate the jth term in row

.th

4, where the first nonzero term in row k is the j~ term,

22



2) 1if row k 1is used to eliminate the jth

term in row 4 it
must be used to eliminate the jth term in every other row, and
3) nothing is added to a row of zeros

are imposed, the resulting form is an identifier form.

The rows of the identifier form which have nonzero elements identify
the corresponding rows of the original matrix as comprising a linearly
independent set (the largest independent set, though not necessarily
unigue). Since we-shall use the identifier form in much of the work to
follow we introduce the matrix operator J(.) which operates on a matrix
to yield an identifier form,

If in obtaining the identifier form we impose the additional
restriction that row k may be used to eliminate the terms in the jth
column only if row k 1is the first row with a nonzero jth term and all

. th

terms before the j are zero then we obtain the first identifier form

Jl(-). If ij is the jth'independent row of the first identifier form
and 13 is the jth'independent row of any other identifier form, ij < 15.

The first identifier form yields the earliest linearly independent set of rows,

Example

Consider the matrix

0|
3

0
1

— —

K
1
0
0

o = o N

Then the matrices

1 o0 o] 0 o0 o] 1 o o]
o o 1 1 0 0 o 1 0
o 1 of 0 1 o o0

(0 0 0] 0o 0 1 o o 1]

are respectively a row-echelon form associated with B, an identifier
form of B, and the first identifier form of B. Note that the indepen-

dent rows of the row~echelon form with ones in the first three rows do not

23



correspond to a linearly independent set of rows in B,
Definition

Given any p X n matrix C = [cij] the rotation of C, rC, is

specified by

rC = [cj(p-i+l)] (3.15)
th . . c . .
The m = rotation of C, abbreviated as ;07> is given as
nF = r[r[ o v . r[rC]] o o o ] (3.16)
T
where m 1is a positive integer. Clearly r4C = C so that if m= 4s + t
with s any positive integer and t = 0,1,2, or 3
m® = € - (3.17)

Using the above definitons and Theorems 3.1 and 3.2 we now present a

stepwise procedure for determining =n, S, and [F,R].

Procedure 3.1

1) Set n_ = N, the upper bound on the actual minimal dimension.

2) Construct the matrix Bn*(k) from observations of the input and

output Vectors(l). @

3) Obtain Jl(ranz(k))Sz)

4y 1f p[Jl(rang(k))] < n_ + rng reduce n, by 1 and repeat
steps 2) and 3), If p[Jl(ranz(k))] =n_ + rnz — there will

be a 1 in each column of Jl[ B ,(k)] with no two 1's in
r2 n¥

the same row-—then n = na and

(D

If p(H) is not known and cannot be determined, but it is known that
p(H) =2 q, use n~g+l in place of ng —this will only cause the

possible use of more data than was necessary.

(2)

If the first rn* elements on the main diagonal of J.( ,B_x(k)) are
a lr2 Ng

not all 1's the u(i) sequence is inadequate and a new Bn*(k) must

. a
be constructed from a new input sequence,
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8= ,0U( 2Bn*(k)))T] (3.18)
r r a

from which we easily obtain S as

S = S(n+l,n4+2, . . . , mFrn*)s ST(pn*+1,pn*+2, e o« o 5 (ptr)n¥)

and

~ -1
[FR] = SA ,(+1)[SB_, (k)] (3.20)

where An*(k+1) is constructed from the input~output observations.

As shown in ref., [15] pp. 36-38 G can be obtained from [F,R]

using the relation

b . —
+. ..+l R (3.21)

G=R_ +FR ,
[o] n¥-1

1

where R 1is partitioned as [R'DR1 o .. Rn*-lj with each Ri an

n Xm matrix. (The derivation in [15] uses n instead of n%*, but
will be the same when n%* is substituted.) The matrix H is found by

solving the n equations
— vy
H
HF

-

s |. =1 (3.22)

HFn*-l

L

using the S and F matrices found above.

NOTE: If an upper bound on the minimal dimension is not known the above
procedure must be modified. In this case start with n = p(H) and con-
tinue to increase it until the condition p[Bn*(k)] =n + rn: is
satisfied; this n = may be the minimal dimension. If n satisfies

P = * L
the condition that p[Bng(k)] n_ + ¥ and for n, =n, + 4,

P[Bix(k)] <mn! + rn!'* V4 21 then n_ 1is the minimal dimension,
a a a a
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In practice it is only feasible to test the rank condition on n; for

£ < L, so that n will not be the minimal dimension if the system
contains time delays greater than L. For the purpose of obtaining a
realization of the system, if n, satisfies p[Bn*(k)] =n, + rnz and
né =n + 4 satifies p[Bné*(k)] < n; + rné* v3 o<1 (where L is
chosen sufficiently large), then n_ is used as the minimal dimension in
the above procedure; the resulting F, G, and H matrices may not be

correct, however.

Procedure 3.1 involves the manipulation of the matrix Bn*(k) to
obtain a form from which it can be determined whether n=n aand from
which an appropriate S is easily obtained when n, = . This procedure
differs from Gopinath'’s procedure in which for each choice of n,
(starting with the upper bound for n) a set of selector matrices is
searched for one which satisfies Gopinath's nonsingularity test and if
one exists it is an appropriate S and n, = n. Both procedures suffer
from the fact that if the choice of n, is not correct we must reduce it
by one and repeat the procedure, and we must continue this reduction of
n_ until n = n. Thus, both procedures will require a great deal of
computation if the upper bound on the minimal dimension (the initial

choice of na) is much larger than the actual minimal dimension.

3.1.3 Direct Procedure for Determining a Minimal Realization

A closer analysis of the matrix Bn*(k) leads to the following
a
theorem which yields an identification procedure offering significant

computational improvement over the methods discussed above.
Theorem 3.3

If the system Y is completely observable and completely reachable
and the assumed system dimension, n, is greater than the actual

minimal dimension, n, then for almost all input sequences {u(i)}

= *
p[Bng(k)] n + ¥ .
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Proof of Theorem 3.3

From the proof of Theorem 3.1 we have

p[Bn*(k)] = p[Dn*(k)] < n+ rng .

a

a

Consider the submatrix En*(k) of Dn*(k) given by

E

Since

_ a
r
HF
MOR x (k)
a .
n*-1
(HF
ulk)
L_u(k+n§~1) .
HF |
nx-1
LﬁF ‘
0] I
i [ rng_J
PR
% (k+) T F G 0
u(k+l) 0 0 Ir
u(ktn*) 0 0
b a__
0 0
-

~

H
HF

_HF

u(k+n+rn§-1)

u[k+n+(r+1)n§—2]

x (k)

a
-

n%-1

e

- B
. 07 x(k)
. 0 1fu(k)
+
¢ 1 u(lern¥-1)
0o o]"- -
=

27

x(k+n+rng-1)

. x(k+n+rng—1)

unz(k) P ung(k+rn§+n-1)

is completely reachable, the system described by

(0"

rJ

u(k+n§)



is also completely reachable., Lemma A2 of ref., [15] then implies that

x(k) . e . x(k+n+rng-1)

- - .
unz(k) . .. un§<k+n+rna 1)

is nonsingular for almost all input sequences. Therefore,

l
H T |
HF |
= . = x
PIE ()] =p . o n + ro¥
a . |
Bl |
0 | Irn*_
L a

where the last equality follows from the complete observability of the

system, Since p[Dng(k)] = p[Eng(k)] it follows that

D[Dng(k)] =n + rnz

This completes the proof of Theorem 3.3.

Now consider the matrix Eﬁ*(k) given as
a

- "'1
%o
u(k) . . . u(ktn t+ro¥ 1)
%=
y(k) . . . y(k+na+rna 1)
_ u(letl) . . . u(k+né+rnz)
B_, (k) = (3.23)
ks y(k+1) . . y(letn_+rok)
= ® L4 L) » *—
u(k+n§ 1) u[k+na+(r+1)na 2]
- X
_y(k+n§ 1) ylletn_+(r+1)nx-2] |
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Ead

By putting B,x(k) into first identifier form we can obtain n and an
a

appropriate S. The procedure for determining n, S, and [F R] is
then

Procedure 3.2

1) Construct the matrix Eﬁ*(k)’ where N* = N-p(H)+1 and N
is the upper bound on the minimal dimension.

2) Obtain Jl[ﬁﬁk(k)]' [The rN* rows of Eﬁ*(K) consisting of in-
put observations will be among the independent rows and n of

the first pn* rows of Eﬁ*(K) consisting of output observations
will complete the set of independent rows. )

3) n = (number of independent rows of Jl[ﬁﬁ*(k)])- rN* ,

4) Construct the pn* X n submatrix K of Jl[Bﬁ%(k)] consisting
of the first pn* output rows and the first n columns not
containing 1's associated with input rows.

s =g (3.24)

5) Construct the matrices An*(k+1)’ Bn*(k)’ and S and obtain
F and G wusing (3.20) and (3.21).
This procedure has the advantage that in one iteration n, F, and G

are determined.

Because S given by (3.24) will have its 1's 1in the earliest set
of columns much of the structure of H and F will be known once §

is determined. Partition X as

X = (3.25)

n¥*
zhere each Ki is p X n. Let q; = p(Ki). Clearly, }E: q; = n. 1f
S1 is the 9, X P selector matrix such that i=1

4

S.K; = [ 0] (3.26]

I
q]_l
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Fu

s.H=[I }0] (3.27)

where H has the form

H = [Hl : 0] (3.28)
PXq; px(n-ql)

Designating the rows of H which are selected by S1 as principal rows,
it is obvious that each of the other rows is a linear combination of the
principal rows preceding it; this linear combination can be determined

quite simply from a record of the output. When q; = p, H will have the

form

= |
H [IP ‘0] . (3.29)

Now let TF be partitioned as

F=1° (3.30)

F
— T

T
where Fi is q; Xn and T 1is the minimum integer such that E q; = m.

We can construct the sequence of selector matrices {gi} i=1

with i = 1,2,...,7 such that

S.S. ... .S.K,

. . (3.31)
ii-1 1] i-1 0 94 i

[l
1
o
=
o
[}

<

This sequence of selector matrices will then satisfy the property that
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=

_ i |
S, .F, = 0 I 0 < ]
J+]- j [ - | qj+1 | ] s VJ T (3 32)

qj+lxz 9

i=1

This will specify (n-ql) rows of F. When q; = 1 the F matrix
will be in companion form.

If an upper bound on the minimal dimension does not exist, procedure
3.2 must be modified., Clearly, if for all N = No’ n = p[EN*(k)] - rN* =
constant, then 0 = n. In practice values for N would be chosen until
N-n 21 where L is chosen to account for possible time delays in the
system., If L 1is not large enough n will not be the minimal dimension

and the realization will not be correct.

NOTE: 1In obtaining JI[Eﬁ*(k)] it will be necessary to choose a number
€. such that any number whose absolute value is less than ¢ will be
taken to be zero; this is to account for computer round off error. An
appropriate choice of ¢ will allow the identification of a system which
is nearly linear, i.e., we will obtain a model corresponding to the
linearization of the actual system., This last point is an advantage which

this technique has over others.

When N is large it may be advantageous to first find the minimal
dimension, n, and then find the selector matrix from Jl[ﬁﬁ*(k)]. For
this purpose consider the matrix

NEAO Frp(et) o . . YR (kkg-1)

Qg (k) =) _ - _ .
N*,q o () Gm (k) L. . U (kkq-1)

Proposition 3.1

If the minimal dimension, =n, is less than N then for almost all
. X T . .
input sequences the matrix Qﬁ%,q(k) Qﬁ*,q(k) will be nonsingular for

q <n+ rN* and will be singular for q > n + rN*,

Proof of Proposition 3.1

In the proof of Theorem 3.3 it was shown that p[En*(k)] =n + rnz,
. . a
where n 2 n., Now ENi(k) is a submatrix of Qﬁ*,(n+rﬁ*)(k) so that

w
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QE* (n+rﬁ*)(k) has full rank. Thus any subset of the columns of
QN* (n+rN*)(k) will be linearly 1ndependent and p[QN* (k)] = q,
Vq < r+rN*, Since for any matrix A, p(AA ) = p(A), 1t follows that
Qﬁ* q(k)Qﬁ* (k) will have full rank and thus be nonsingular for
’ q

qs<n+ i)

The matrix Qﬁ% (E+rﬁ*)(k) is simply B (k) and it follows from

- * =
Theorem 3.3 that D[QN* (N+rN*)(k)] ntrix, Slnce D[QN* (n+rNk)(k)]
mhr¥* this means that the columns (oFrN*+1), (brN#+2), . . . ,
S -
(MrN*) of QN*,(N+rN*)(k)
columns, and so p{QN% q(k)] <q for q > mtrN*., Therefore,
2

are linearly dependent on the first (nt+rN¥)

Q§% q(k)Qﬁ% q(k) will be singular for q > ntrN+*.
2 3

This completes the proof of Proposition 3.1

Proposition 3.1 implies that the minimal dimension can be determined
by flndlng that value of q such that Qﬁ (k)Qﬁ* (k) is nonsingular
and QN* (q+1)(k)QN* (q+1)(k) is 51ngu1ar. Then, 1ett1ng q be the
value of q satisfying this condition, n is obtained from the equation

= E - rN*, Methods of searching for E which minimize the number of
computations required can easily be determined.

When n and S are determined directly from J [B (k)] the

property that Q (k) 1is nons1ngu1ar while

N*, (n+rN*)( )QN* (n+rN*)

QN* (n+l+rN*)( )QN* (n+L+rN*)(k) is singular can be used to check the

minimal dimension obtalned

3.1.4 Example

Consider the system X given by

1 1 o 0
F=10 1 1 c=|o0 H=[100]
0o 0 1 1 0 1 1
with
0
x(0) = 0 .
0
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Then for the input sequence

u(0) = -1, u(l) = 2, u(2) = 3, u(3) = -6, u(4) = -2, u(5) = 1,
u(6) = -1, u(7) =7, u(8) =0, u(9) =1, u(lo) = -3
the output sequence will be
-0 ~0 -1 -1
y(1) = » y(2) = » y(3) = s y(4) = )
-1 LO 4 2
- ~ -
3 5 3 -2
y(5) = , y(6) = > y(7) :], y(8) = s
-9 -5 -9 -6
—;lﬂ -17 =20
y(9) = » y(10) = » y(l1) =
-3 ] 1 2

Assuming the upper bound on the minimal dimension of the system is N = 4

and assuming it is known that p(H) = 2, we have N*¥ = 3 and

" 2 3 -6 -2 1 -1 7 ]
0 0 -1 -1 3 5 3
-1 0 4 2 -2 -5 -9
3 -6 -2 1 -1 7 0
53(1) =] o0 -1 -1 3 5 3 -2
0 4 2 -2 -5 - -6
-6 -2 1 -1 7 0 1
-1 -1 3 5 3 -2 -11
| 4 2 -2 -5 -9 -6 -3 |

Putting this into first identifier form we obtain
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1 0

0 1

0 0

0 0

31[53(1)] =10 0
0 0

0 0

0 0

L 0 0

Then n =

1 0
S = 0 1
0 0

o O O O O O = O ©

[P, [B,(1)])-3r] = 3 and

o O O O O = O o ©

(o2 e ]

©C O O O H O o o o

Using this selector matrix we then obtain

0 -1 -1

s8,(2) =| 0 4 2
-1 -1 3

K 0 -1

-1 0 4

GO I
2 3 -6

|3 -6 -2
[ 460

11 8
[8B,(1Y T =533 275
-155

| 165

Substituting these expressions into (3.

535
160
275

90

34

-84

-60
87

20) yields

O O = O O O O o o

248
98
70
11
27

O O K o M M K K ¥

J

[l

138 |
-12
45

12



[FR] = 1 2 -1 1 0 0
0 1 1 0 0 0
and using (3.21) and (3.22) we obtain
0 0 1 0 1 0 0
F = 1 2 -1, G=|1 |, H = 0 1 0
0 1 1 0

This internal description of %L 1is equivalent to the internal
description given at the beginning of the example.

The matrices K and K are

1 2
1 0 o0 0 0 1
=140 1 of K=1o o o

from which we find by inspection

5,=1, , 5, =1[1 0] .

It is easily seen that S S, together with the H and F matrices

12 72
obtained satisfy (3.27) and (3.32).

3.1.5 Procedure for Determining the Minimal Realization of Continuous

Systems

For the continuous time system of (2.2) the equations analagous to

(3.5) are

Bx(t)

y(t)

y(l)(t) = HFx(t) + HGu(t)

y(2)

(t) = HF?x(t) + HFGu(t) + Hou'L) (t) (3.33)

y(n*-l) n¥*- 2 (n*-2)

(t) = HF 1x(t) + HF Gu(t) + . . . + HGu (t)
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3
&

. i
where y(l)(t) = Q_I y(t). The equation corresponding to (3.4) is then

dt
_ Sy (t)
Syr(li)(t) = [F R] _n* (3.34)
a_ (6)
where
T T
e® = vy s o y D )
T T
wl® = e WP WD ey

Mathematically it is now possible to obtain an internal description
using either procedure 3.1 or 3.2 with ;ﬁ*(t) and Eﬁ*(t) replacing
Yng(k) and Eng(k)' Because of the problgms which areainherent in
differentiating the signals y(t) and u(t) it is not feasible to use
this solution. Fortunately it is possible to use a linear operator on
both sides of (3.34) to yield an equation which involves no derivatives.
We now present one such operator. To simplify the equations use will be

made of the following definitions:

t+t t+t t+t

— (o o] [e)

I (t,) 4 f f . f (+) drjdr, . .. dr (3.35)
t t t
[o] Q (o]

R (a,p,7) 2 %—{—gﬁ% (3.36)
A= n-1 =

D(7,7y,0,°) = I (77,°) = (17/7)) L (155°) (3.37)

It can then be shown that the operator
L(Estys o o o 5 E,0) =[- . ({[D(tl’tz’n") - K(t;,t5,t5)
D(t1:t3’n")] - K(t2,t3at4)[D(tlat2:n") - K(tlst23t4> °

D(E,t,,m,7) ]| = Kltgt,,ts) |D(Ey,Eysm,0)
(continued)
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= K(tl’t2’t3)D<t1’t3’n’.)] - K(t23t3)t5)[D(t1’t2’n")

- K(tl,tz,tS)D(tl,tS,n,-)]}) - .. ] (3.38)

when applied to y(l)(t) will yield an expression which involves no

- derivatives, for i < n,
Example

For n= 3 (3.38) becomes
L3(t1:t25t33’) = D(t13t2’3") - K(tlstzstB)D(t1:t3’3s') o

(3)

Taking the initial time as zero and applying this operator to ¥y

),
Py, vV

(t), and y(t) gives

(3)

Ly (£ by sy O (0)) = 3£ [1K(E 58y, E0)] = (E1/85)3(Ey)

F Kty ty) (E2/E)7(E,) = y(0)[1-(e3/E)) (e, by ) -

2,2
(1 - (£7/€50)]

t

t
1 2
[ ywae - & [ vwa
0 t 0

1 ) 9 (3
Kty ety [y + ke ep e [ ywa
0 0

(2)

1 f1 2 F2
%Q@%MWwwffym#wmww@H@@ffﬂmf
0 0 0 0

35
2,2 2
+K(t1,t2,t3)(t1/t3)ff y(t)dt

0 0
tl tl t1 3 - t2 tz tZ 3
%mﬁ%mm=fffymMUﬂ%@@HW@f fﬂmt
2 0 0 0 0
2,2 3 ti/53 3
+ K(tl,tz,t3)(t1/t3)ff y(t)dt
0 0 0

The expressions on the right are all free of derivatives.
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Using the operator of (3.38) on both sides of (3.34) yields

SL  (ErsEny o o o 5t oy . (t))
—(1 K\t ) *? o
SL_(E,tys « o o, £y (8) = [F,R]| O m_r

Lix(Epoty o v o 5t 400 £(E))

(3.39)
It is then possible to obtain an internal description using procedure 3.1

, —(1 -
or 3.2 with Ln*(t11 o e e tn*,yé*)(t)), Ln*(tl’.' SRS n*(t»’ and
Ln*(tl’ o o e ’tn*’un*(t)) in derivative free form replacing ?h*(k+1),
?n*(k), and ﬁﬁ*(k) respectively. This will avoid all problems

involved with differentiation.

3.2 Identification from Noisy Input/Output Observations

3.2.1 Description of Svstem with Noisy Observations

When the input and output measurements are corrupted by additive
noise the identification procedure must be changed since noise terms will
generally make the rank of Eﬁg(k), constructed from these noisy
measurements, larger than it would be if constructed from noise free
measurements, In the next section three distinct identification procedures
will be presented, These procedures differ in the assumptions which can
be made about the system, the input, and the observation noises,

The input/output description of the system will still be

57 (k)

Sy_ (1) = [F R]| (3.40)
En*(k)

but instead of observing y(k) and wu(k) we will have the measurements

z(k) = y(k) + v(k)

(3.41)

w(k) = u(k) + p(k)

where v(k) and (k) are the additive noises. We shall assume that
v(k) and p(k) are zero mean, are independent of the input and output,

and that

38



E(v(D)v (D)} = Clieg]
B(uu’ (D) = by (3.42)
BV (D] = @y )

To simplify proofs in the following sections it will be assumed that all

random processes are ergodic.

3.2.2 Consistent Identifiers

A drawback to many optimal identification schemes, e.g., maximum
likelihood, is that they must assume the noise processes are Gaussian
to make the solution computationally practical. In general this
condition on the noises is not satisfied., Therefore it is desirable to
have a computationally practical identification procedure which, though
nonoptimal, is independent of the noise density functions and provides
a convergence rate comparable to that provided by optimal identifiers.

The consistent identifiers presented below satisfy these requirements,
Definition
An identifier yielding an internal representation (FN, GN’ HN)
from N noisy observatioms of input and output is a consistent identifier
if
P{lim (F,6 ,B) = (F,G,H)] =1
N N’"N HN

where (F,G,H) is a minimal realization of the system.

In discussing the consistent estimators presented in this section

use will be made of the following definitions.

Vi(k) 8 Ty vl ... vi(k#n-1)7
pw & e pfeern L. pT D))
Z () 43 (0 + T ()

(continued)
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v (0 85 (0 + B

3. 4B (K =B (k) + B_, (k)
n% n* - — * * —_ -
a a | z,0 -y, k) Ta Ya | v =y 0
a a a a
W (k) ~u (k) (k) = (k)
a a a a
B (k) = B__ (k)
n¥ n¥ = -
a a z oK) =y . (k)
a a
W () = u (k)
a a
K, (ktl) L & (k1) (3.43)
n? n - -
a a 7y (k) =y (k)
a a

It is obvious from (3.42) and the fact that the noises have zero mean that

E(B_,(K)) = E(B_, (k)]
a a

E(B,(K)} = E(B_, (k)
a a

E(A ,(kt1)} = E{A_, (kt1)) (3.44)
a a

To avoid unnecessary complexity we shall in this section assume that the
structure of the system is sufficiently well known that an adequate
selector matrix is available. 1In section 3.2.3 we shall discuss the case

when an adequate selector matrix is not known.

3.2.2.a Consistent Off-Line Identifier

Suppose that after sufficient observations have been taken to
construct the matrices [An*(1>]i and [Bn*(o)]i the system %i
reinitialized and data is recorded to construct the matrices [An*(l)]i+l
and [ﬁé*(0)11+1 corresponding to the (i-+1)th iteration of this

procedure., Consider then the equation

40



AT
n
Z =

N N
2 SE LW = R Ry YAl L0, . (3.45)
i=1 i=1

Now from the assumption of ergodicity and the fact that the noise

processes have zero mean it follows that

N
lim L
N
N-sco N
i=1

SIE (01, = FE(B_.(0)} . (3.46)

The matrix SE{BH*(O)} will be nonsingular if

x(0) . . . =x(rn*n-1)
Pl EC|_ _ =  rn¥*n (3.47)
un*(O) e . . un*(rn%+n-1)

From the discussion in section 3.1.2 it is apparent that (3.47) will be
satisfied almost surely provided that for each i E{u(i)} be chosen
from a nonlattice distribution.

Taking the limit of the left side of (3.45) vields

N
.1 ~ _
élm 5 2, SIE (D], = SE(A_, (D)) .

i=1

Thus, provided E{u(i)} are chosen from a nonlattice distribution, the

equation

SE(A_,(1)} = [F_ R_ISE(B_,(0)) (3.48)

~

which is the limiting form of (3.45), will have a unique solution for
[fw ﬁm]. It is apparent from taking the expectation on both sides of
(3.10) that

[F_R)] = [FR].

Therefore the identifier of (3.45) is consistent., For any N such that
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2|

N
Y BB (01,
i=1

is singular the estimate [ﬁN RN] is not made,
If no input is applied or if E{u(i)} = 0 Vi, it is possible to

identify F consistently using

S[A

MO (3.49)
1

=

N
L s[E_.(1)], = P
N n* i N

i=1 i=
provided p([E{x(0)} FE{x(0)} . . . Fn-lE{x(O)}]) = n, which is
satisfied for almost all E{x(0)} if F 1is cyclic.

The off-line identifier has the advantage that it is not necessary

to know the variances of the noise processes., The obvious disadvantage

is that it is an off-line procedure and it is often desired to identify

a system which is running or one which cannot be conveniently reinitialized.

3.2.2.b Consistent On-Line Identifier

Assume the covariances in (3.42) are known and define’

E(v (D (1)) £ T (1-1)
B, (Dp, (D) 2 3_(1-3)
By (DVo(D) 2 & (i-1) (3.50)

Now consider the equation

N
S 3 SE (DB, 08 - (b [sT_ (DT sEL, (-1 ) =
k=l (3.51)
= T =T
T (0sT 53,0

N
[ﬁN ﬁN} % zg: Sﬁé*(k)ﬁi*(k)ST - (mtrn¥) | _ T -
k=1 ® ,(0)s A_4(0)
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From the assumptions of ergodicity and independence of signals and
noise it is easily shown that the limiting form of (3.51) as N tends

to infinity will be

T T A oA T T ,
E(SA ,(tDB  (k)8") = [F_R_IE{SB_,(I)B_, (k)§"} {3.52)
Provided the input sequence is such that

PIE(L , ()., (k)}] = rn¥ (3.53)

the matrix multiplying [ﬁm ﬁm] will be monsingular and a unique solution
will exist for [fm R_1. Multiplying both sides of (3.10) from the right
by BE*(k)ST it is apparent that

[F R] = [FR]

so that the identifier of (3.51) is consistent.

This identifier has the advantage that it uses the data from a
coﬁtinuously running system, but it has the serious drawback that the
noise covariances must be known. Errors in the covariances will result

in bias in the parameter estimates.

3.2.2.¢c Variance Free On-Line Identifier

If the inputs are observed without noise and the observation noise
on the outputs is such that for some finite M, Fn*(i)= 0 Vi 3 |i] 2 M-1
it is possible in some cases to identify the system on-line without

knowing the noise covariance. Define

y (D) ...y (kiMobroe-1)
Z i (ksM) & o _F’
u . (K) .. un*(k+n+rn*—l)
it 4
Zn?'\‘(k’M) - Zn:’c(k’M) -— (3-54)

2 (K) = T ()

and consider the equation
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N N
S D K L a2l aenst = [Fy Ryl S 38, NOVARCROTS
k= k=1 (3.55)
As N tequ to infinity we have
N
1 ~ ~J
tim~ Y 5B 07, g’ = B 0zl ac,mg")
e k=1
(k)
= (ntro®)E( _n“‘ 7, (eiDST T () 1)
un‘k(k)
and
N .
1ml Z SA (k+1)Z L (K, M)s = E{SAn*(k+1)Z£*(k,M>ST}-
N—-)oo
k=1

Now from (3.4) it follows that

- M_— M-1_— -
Syn*(k+M) =F Syn*(k) + F 1Run_k(k) + .. .+ Run*G£+M-1) (3.56)

so that

T
B{SY_, ()Y, (DS ) = E(Sy_ (0 (S F ] +

T
E{Sy (k)u (KR Tpi-1 }+

-+

E(SY_, (K)ur, GH-1R'} . (3.57)

Therefore, if F is nonsingular and the input satisfies (3.53) the matrix

B(SB_, (07, (k18"

will be nonsingular, so that [(F, Rm] is uniquely determined. For F
nonsingular the matrix SZ (koM) will almost surely have full rank,

and multiplying (3.4) on both sides by Z o (ks M»g from the right
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it follows that [Foo Rm] = [F R].

When the inputs are observed with noise it is still possible to
identify a system with a nonsingular F matrix provided that 1) for
some P Za*(i) =0 Vi |i|] 2P and &;*(j) =0 Vvj 3]j] =ep-1,
and 2) the input sequence satisfies the condition p[E{En*(k)Eg*(k—P)}] =
rn*. Under these conditions consistent on line identification can be

obtained using

N N
]. ~ NT 'I' _ ~ PN l ~ "-’T T
D SE LDV (MBS = [F R E D 88 L (0T, (1,28
k=1 k=1 (3.58)
where
—}; ‘4'€(k+M) LI ] . -}; *(‘k“}'M'l—‘[l-l—rn‘k-l)
v o) & ’n
Un*(k'P) . e . un*(k-P+n+rn*—1)
and

,\7n*(k,M,P) = Vn;k(k’M’P) _ .

LA
The choice of which consistent estimator to use depends on 1) the
information available about the noise processes, 2) the singularity of
the F matrix, 3) the ability to reinitiate the syétem, and 4) the
amount of control over the inputs. Each of the identifiers presented
has the advantage that it is computationally practical for a wide class

of noise processes and not just gaussian noise processes.

3.2.3 Consistent Determination of the Selector Matrix

In the preceding section it was assumed that the system dimension
and an appropriate selector matrix were known. When this is not the
case n and S must be estimated from the noisy observations and these
N’ would be used in (3.45), (3.51), or (3.55).

Consistent methods for determining n and S will now be given for

estimates, fii and S

each condition in the previous section. It shall be assumed throughout
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this discussion that an upper bound N on the minimal dimension is

known,
~e

Because of the noise the rank of BE*(k) will almost surely be
N+ N*, Suppose that [Bﬁ*(o)]i corresponds to the ith reinitializing
of the system., Then almost surely p([Bﬁ*(O)]i) = N+ rN* for each i,
However, averaging over i as the number of initializations becomes

infinite, we have

N
P {;ixz%} Z [gﬁ*(o)]i} = p[E{Eﬁ*(O)}] (3.59)
i=1

When the conditions under which (3.45) is consistent are satisfied

p[E{’B‘E*(O)}] = nrN® (3.60)

For any finite value of N the rank of

~

[By (0)];

Z | =

N
i=1

|

would almost surely be N + TN*, However, it can easily be shown that

the variance of each term of the matrix

~

1 —_—
N [Bg«(0) 14

N
=1

=

decreases as 1/N. Therefore, for an appropriate choice of the tolerance

used in obtaining the identifier form

N
1 =~ —
o Jl N Z [Bﬁ*(o)]i =n + rN*¥  for almost all N 2 N0
i=1 (3.61)

for some constant Noa Theoretically the tolerance ¢ could be chosen

as a decreasing function of N, converging to zero in the limit., In
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practice € must always be greater than zero to account for the
computer round off. For use in (3.45) ﬁN and §N would thus be
obtained using procedure 3.2 with

N ~~
2 (B (0],

i=1

=2 =

replacing Bﬁ*(k) and the tolerance chosen appropriately. From (3.61)
it follows that

Y

]
=]

. for almost all N (3.62)
SN

i
w

when € 1is chosen appropriately and from (3.59) and (3.60)

P{A_=n) = P{S S} =1. (3.63)

@

When (3.50) is used for identification A_. and §N should be

N
. /
= e -
9 |5 X B (0BL 0 - (proFsC (3.64)
k=1

determined from

where
C = E{Eﬁ*(kﬁ%*(k)}

-—T

v (k) 4 [VT(k) pT(k) vT(k+1) e e e vT(k+n+rn*-1).pi(k+n+rn*—1)]

n*
The limit of (3.64) as N tends to infinity is

— T
3 (E{Bg, () BL0)) - (3.65)
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Lemma 3.2

For any matrix X, if § is the selector matrix with p(S*) =
p(X) and p[S°9; ()] = p(X), then p[s*9,XXD)] = p(X).

Proof of Lemma 3.2

Suppose X is pxq and has rank r. The statement that p(S*) =
Pp(X) simply implies that s* is an rXxp selector matrix, and the
fact that p[S*dl(X)] = p(X) means that s* is that rxp selector
matrix which picks out the r independent rows of Jl(X).

Since p(XXT) = p(X), Jl(XXT) will have r independent rows. We
want to show that these rows are the same as the independent rows of
Jl(X). Now if the itB row of X is linearly dependent on the rows
preceding it, it will not be an independent row in Jl(X); and designating
the ith row of X by x; it follows that the ith row of XXT, which
is xiXT, will be linearly dependent on the preceding rows of XXT.
Thus, all zero rows in Jl(X) will be zero rows in Jl(XXT), and the
independent rows must also correspond.

This completes the proof of Lemma 3.2

Lemma 3.2 implies fhat the selector matrix obtained from
I, (B, () ETN*(k)) will be the same as that obtained from J (Br, (k).
Therefore, by appropriately choosing the tolerance €(N), the estimates
of n and S obtained using (3.64) should satisfy (3.62) and in view
of (3.65) will satisfy (3.63).

Similar considerations apply for estimating n and S when (3.55)
is used for identification. In this case ﬁN and §N would be obtained

from
N

~ ~r
D B, (0 7, (kM)
k=1

’—-l
==

where
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v (k+M) o o o y(ktMtrrbro*-1)

u(k) e o o u(ktntrn*-1)
= i . . .
Zn*(k’M) . . .
y(kitn*-1) . . . y(kiMo(etl)n*-1)
| u(k+n*-1) . o« u(kink(r+l)n*-1)
Z_ (M0 = 2 (k1) .
Z e - y ot
n¥ n¥

The tolerance <(N) has the effect of determing with what precision

~

the model (F
(F,G,H).

N éN, HN) would match the output of the actual system

NOTE: Considerations completely analogous to those presented in

sections 3.2.2 and 3.2.3 are also valid for continuous systems.

49



p

4. STATE ESTIMATION

4,1 Constant Gain Observer

To estimate the state of a constant linear system X described by

x(k+1)

Fx(k) + Gu(k)

y(k) = Hx(k) (4.1)

from observations of input and output a convenient method is to con-

LAl
struct another linear system 2 given by

Ret1lk) = Fx(k|k) + Gw(k)
R(k+1|ktl) = R(k+1]k) + R(k+1) [z (k+1) - ﬁfc(k+1lk)]. (4.2)
where
R(k+1]j) = estimate of =x(ktl) based on observations of input and
output up to time j
(ﬁ,&,ﬁ) = model of the actual system
w(k) = noisy observation of input u(k)
z(k) = noisy observation of output y(k).

The state of 5 can be observed. The problem is to choose the gain
K(k+1l) so that the error z(k+1|k+l) 4 x(k+l) - i(k+1|k+1) is made as
small as possible — for noisy input/output observations K(k+1l) should be
chosen to minimize the trace of the error covariance matrix.,

If (ﬁ,&,ﬁ) = (F,G,H) and the mean and covariance of the state are
known at some initial time ko’ then the Kalman filter solution will be
optimal. When the model differs from the actual system, use of the
Kalman solution would yield incorrect expréssions for the covariance,
and the gain sequence, which depends on the covariance, would in no way
be optimal—in fact, use of this gain sequence may result in divergence
of the actual and estimated states. Also, initial errors in the mean

or covariance of the state cause the Kalman filter to yield incorrect

expressions which might result in divergence. These limitations are
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quite important since model errors will generally exist and since
accurate statistics on the state are usually unavailable.

A constant gain state estimator, though sub-optimal, does not have
these limitations since knowledge of the covariance is not required.
This filter is less sensitive to model errors, though divergence may
still result if the errors are large. In section 4.1.1 the case of
noise free observations is considered, and it is shown how for a minimal
system the constant gain may be chosen to yield almost arbitrary dynamics
for the estimation error (arbitrary dynamics when F is nomnsingular).
Section 4.1.2 deals with the case of noisy observations, and criteria
for choosing K are established, In both sections model errors will be

neglected— these will be considered in section 4.2.

4,1.1 Gain Selection for Noise Free Observations of Input/Qutput

For noise free observations, no model errors, and constant gain

equations (4.2) become

% (k+1|k) FR(k|k) + Gu(k)

F(k+1l|k+1) = R(k+l|k) + K[y(k+l) - BR(k+1]|k)] . (4.3)

From (4.1) and (4.3) it is easily seen that

X(kt1|ktl) = (F-KHF)®(k|k) . (4.4)

Theorem 4,1

1f the system is completely observable and F 1is cyclic and non-
singular the gain K ‘can be chosen so that (F - KHF) has a prescribed

characteristic polynomial.

Proof of Theorem 4.1

Suppose the characteristic polynomial X(F) 1is

n
X(F) = s™+ 9 as" %.5)

i=1
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and the desired characteristic polynomial ¥(F-KHF) is

X (F-KHF) (4.6)

1

7]
+
w

e
7]
[
e

Now,

X(F-KHF) = det(sI-F + KHF)

det[(sI-F)(L+(sI-F)'1KHF)]

X(F)det[1+(sl-F)'1KHF]

If the choice of K 1is restricted to those gain matrices of rank one

(i.e., K= ch where ¢ is an nXl matrix and d is a pXl matrix)

then
-1 -1
det[I+(sI-F) KHF] = 1 + tr[(sI-F) KHF]
and -1
X (F-KHF) = y(F) + tr[y(F)(sI-F) KHF]
- (4.7]
i
F
= X(F) + tr[x()) ). T KHF]
s
Using (4.5) it follows that i=0
© . @ -4 ©
i
F i n-i-1 i n-i-2 i -i-1
X(E) D =7 = D F's o P s Foaen ) Fs
i=0 ® i=0 i=0 i=0
[+=]
_ ,un n-1 i -i-1
= (@ o F T+ + ) :E: F's
i=0
n-1
+ (0 F+ . +F )
n-2
(g ,+ @ JFt ..+ F s
+ .
+ (o + D P (4.8)
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From the Cayley~Hamilton theorem we have

n
o4 Z oziF“'l =0
i=1

so that (4.8) becomes

_ Fi n-1
X (F) Z g = (o +a F+. + F Y
i=0
+ (2 ,+Qa F+ + F¥7?)
n-2 n-3 s
+ .
+ (o + F)g” 2 + gt (4.9)

and substituting this into (4.7) yields

X(F-KHF) = x(F) + [@ _; tr(KHF) + & , tr(FKHF) + . .

+ te (@ lkuF) 7 + (o _, tr(KHF) + . . . + er(F*2RHF) 18

1

+ . . .+ [tr(KHF)]s (4.10)

Equating the coefficients of the various powers of s in (4.6) and

(4.10) we obtain the following equations

31 = o + tr (KHF)
|32 = q, + o tr (KHF) + tr(FKHF)
(4.11)
= a + tr(KHUF) + + tr(Fn'lKHF)
Bn n n-1 c ot
Equations (4.11) can be written more compactly as
b=a+AY (4.12)
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Since

¥

3
e

=
e

ling

tr (KHF)

. tr (FKHF)

>

tr (7 Lkur)
— —t

A 1is nonsingular

= A'l(b-a)

Now, for K = ch we obtain

tr

so that

er@FT )
1+1ch)

(F1xEF)

tr (HF

dTHFr+lc
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(- du i

atur

Fc = A Y (b-a) 4.15)

ateFt” U

For almost any pxl matrix d the matrix
- -
dTH

dTHF

ne

.

dTHFn-l

— -

will be nonsingular. Therefore, after choosing an appropriate d, one

for which M is nonsingular, c¢ is found from the equation
¢ =5 M A (b-a) (4.16)

and the gain K = ch, with ¢ and d determined in this manner will

produce the prescribed characteristic polynomial,
This completes the proof of Theorem 4.1.

Theorem 4,2

If the system is completely observable and F is cyclic and
singular, the characteristic polynomial of (F-KHF) will have no
constant term but the gain K can be chosen to yield an otherwise

arbitrary characteristic equation,

Proof of Theorem 4.2

The constant term Bn in (4.6) is given by

Bn = det (F-KHF) = det(I-KH)det(F)
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so that if F is singular (det(F)-=0) Bn =

equations (4.11) reduce to

By =t tr (KHF)
[32 = 052 + o tr(KHF) + tr(FKHF)
B = + o tr(KHF) + . . . + tr(F

n-1 n-1 n-2

which can be written compactly as

b=a+AVY
where

=T A

b™ = [Bl Bz L Bn_1]

T A

a = [O& Oé o e 05_1]
1 o . . . OT
ay 1 0... 0

N ‘
| %2 %3t %
tr (KHF) ] duF ]
tr (FKHF) aTur?

¥4 |, = . c.
| er (7™ 2xup) | | aTar

For almost any choice of d the matrix
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KHF)

case

(4.17)

(4.18)



=1
e

dTHFn-l

— o

will have full rank (i.e., p(ﬁ) = n-1), Then, since A is nonsingular,
(4.18) represents (n-1) 1linear, independent equations in n unknowns,
the elements of c¢. Therefore, (4.18) will have many solutions for c.

One such solution, which minimizes the Euclidean norm of ¢, is

1-

c =M

2% - ) (%.20)

Thus, after finding a choice of d such that p(ﬁ) = 1, an =nx1

n—
matrix ¢ can be found using (4.20) such that K = ch will yield the

desired characteristic polynomial.

This completes the proof of Theroem 4.2

Theorems 4.1 and 4.2 show that for a completely observable system
with a cyclic F matrix the dynamics of the error in (4.4) can be made
arbitrary if F is nonsingular and almost arbitrary if F 1is singular
by an appropriate choice of the gain K. In particular K can be
chosen such that the characteristic roots of (F-KHF) are all zero —
this will cause the error to go to zero in at most n steps. The
convergence of the constant gain observer does not depend on the

accuracy of the initial statistics of X.

4.1.2 Gain Selection for Noisy Observations of Input/Output

When the observations are corrupted by noise equations (4.3) become

R(k+1]k) = F R(kl|k) + G w(k)

R(ktl|kt+1l) = R(kt+1|k) + K[z(ktl) - H R(k+1]k)] (4.21)
and (4.4) becomes

X(kt+1|ktl) = (F-KHF)X(k|k)~-(G-KHG)u(k) - Kv(k+l) (4.22)
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In this case it will not be possible to drive the error to zero, The
gain K will be chosen to yield a sufficiently small trace of the
steady state covariance matrix, however.
The characteristic polynomial of (F-KHF) can be written in factored

form as

X (F-KHF) = (s-dl)(s—dz) e e e (s-dn) . (4.23)

Theorems 4.1 and 4.2 show that for a completely observable system with a
cyclic F matrix the gain K can be chosen to yield any real set of
di’ with the restriction that dn =0 1if F 1is singular. Suppose the
di are chosen real and distinct (with dn = 0 for F singular) and an
appropriate K 1is determined. Then the eigenvectors 12 of (F-KHF)
can be found and the matrix P [pl Py o - - pn] will satisfy the

condition

>

p~ L (F-xuF)P = o A (4 .24)

If the transformation £(k) = P-lx(k) is made, equations (4.1), (4.21),
and (4.22) become

E(k+l) = P'lFPg(k) + P'lc;u(k)
y(k) = HPE(k)
Eerll) = PTlRRE(k|K) + P low(k)

E(krl|k) + P IR[z(k+1) - HPE (kH1|k) ]

£ (k1 |k+1)

sEx|R) - 27l(G-RHG) p(i) - PTIR v(kel) | (4.25)

T (kt1|kt+1)

Assuming v(k) and u(k) are zero mean, mutually independent random
variables with variances V. and U, respectively, the equation for the

covariance I, (k1 k1) & E(E (kL |t 1) ET (et 1| kH1) ] is

T
Zg(k+1|k+1) = Azg(klk)AT + P L6 KHG)U(GT-GTHTKT)P + 2 lkvkTp” -1 .

(4.26)
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If the di are restricted such that ‘dil <1 for all i, a steady

state covariance Zg(w) exists which is specified by

T T
Zg(m> = Azg(m)AT + P-1(G—KHG)U(GT—GTH:Ki)P_1 + P'lKVKTP'l .
4.27)
Now,
T
er[5, ()] = tr[Azg(w)AT] + tr[P L (6-kuG)U(CT-cTH KD )P L ]
+ tr[P'lKVKTP'lT]
and letting d* = max {d]
i
2
tr[AZE(m)AT] = tr[ATAZE(w)]Sd* tr[Zg(m)]
so that
tr[P-l(G-KHG)U(GT-GTHTK:)P-IT] + tr(P-lKVKT 'lT)
tr[zg(m)] < > (4.28)
*
1-d

The covariances Zg(k+1|k+1) and Zx(k+1|k+1) = E{%(k+1lk+1)§T(k+1|k+1)}

are related by

5, (el [kt1) = Pzg(k+l]k+1)PT (4.29)

Taking the Hilbert norm of both sides of (4.29) gives

g, et |k ) || = ”Pzg(k+1|k+l)PTH
< [pI? [z, Gt ) | (4.30)
and since |A| = Max@) > the largest eigenvalue of A, if A is

symetric and positive semidefinite equation (4.30) becomes

2
Mpax G (Lt D) = [BI° A 5, GerllerD)) (4.31)

For a square matrix A of dimension n
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tra) = ) A @A) (4.32)

and if A is positive semidefinite Ki(A) 20 Vi so that

er(A) = A (A) . (4.33)
Using (4.28), (4.31), and (4.33) it is easily seen that

T T

. 2 tr[P-l(G—KHG)U(GT—GTHTKT)P—1 ]+tr(P_1KVKTP-1 )
A L5 (@1 =[] >
1-d*
(4.34)
Now,
%max[zx(w)] = Gx Vi

ii

where Gxii(w) is the ith diagonal element of Zx(w) and, as such, is
the steady state variance of the error in estimating the ith element of
the state vector., Therefore the criterion to be used for choosing the

gain K will be minimization of the bound in (4.34). The procedure for

choosing K is then

1) Choose a set of di with adequate convergence properties,
observing the constraint for singular F,

2) Find a gain K vyielding the corresponding characteristic
equation using the results of Theorems 4.1 or 4.2.

3) Obtain the matrix of eigenvectors, P.

4) Compute the upper bound in (4.34)

5) If this bound is satisfactorily small the gain K can be used,
If the bound is too large, iteration can be performed either
on steps 2)-~5) or on 1)-5) until a satisfactory bound is

obtained,

NOTE: For a continuous system equations (4.22), (4.16) and (4.34) become

R(E) = (F-KIF(E)- (G-KHG)u(t) - Kv(t) (4.35)

= M A" (b-a) (4.36)

(]
|
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i T i T
2 tr[p Le-kue) v -cTH R P Y ere tkvkTeL )

2 Id‘kl

A IS (=] < |2

max- X

(4.37)

where the di are chosen as :egative real numbers (there is no restric-
tion for F singular) and d = max {di}. The p, are eigenvectors of
(F-XH) for the continuous case. %he procedure given above can then be
used in conjunction with (4.35), (4.36), and (4.37) to choose the gain

K for a continuous observer,

4.2 Open-Closed Loop Observer

If the system is not known exactly and [f(k+l), a(k+1), H(k+1) ]
is the model used for estimation at the k+1th time instant, equations
(4.2) become

£ (k+1]k) Ft1)R(k|K) + Get1)w(k)

£ (k1 |kt1)

£(k+1]k) + R(k+1)[z(kt+l) - H(kFD)RE(kF1]K) ] (4.38)
and the error Z(k+1|k+1) is given by

% (k+1|k+1)

[F(erl) - R(kFL)H(KFL)F (k1) T2 (k k) - [E(k+1)

R(k+1)H(kH1) Gt 1) Ju(k) - K(ket1)v(k+1)

+ [F(ktl) - R(kHDHEGFD)F(HL) Jx(k) + [G(ktl)

R(FDARHDTOetL) Ju(k) - KHDE(RHL)x(k+1)  (4.39)

where %(k+1), G(k+1), and H(k+l) are the unknown errors in F, G, and H
respectively, Lacking any information aboﬁt these modeling erroré a
reasonable choice for K(k+l) is the constant gain that would be used

if (ﬁ(k+1), &(k+l), ﬁ(k+1)) were the actual system. This is an open-
closed loop observer. It is open loop in the sense that the gain at

each instant is computed as though the model of the system would not
change, but it is closed loop because the gain is recomputed at each
instant to take account of changes in the model. If the model at time
(k+1) is the same as that at time k then K(k+1) = K(k).

Suppose the model is obtained from a consistent identifier. Then
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lim [F(k), G(k), H(k)] = (F,G,H)
k=
lim [F(k), k), H(k)] = (0,0,0)

k=0
and in the limit (4.39) becomes
X(k+1|k¢l) = (F-K.““‘:HF)?{(kIk)-(G-K*HG)H(k) - K*v(k+1) (4.41)

where K' is the gain that would be computed for (F,G,H) by the
procedure in section 4.1.2, The steady state covariance obtained using
this open-closed loop observer in conjunction with the consistent
identifier will satisfy (4.34). Note that using the consistent identifier
the model does not have to be updated after each input/output measurement,
but can be updated at any desired rate. Clearly, as the model converges
to the true parameters the rate of updating can be decreased. Between
time instants at which the model is recomputed, the gain of the estimator
will remain constant, These features represent a great computational
saving over schemes in which an approximate covariance matrix must be
computed at each time instant.

In summary, the combination of a consistent identifier and an open-
closed loop observer is recommended for solving the problem of parameter

identification and state estimation because of

1) consistent parameter identification,
2) computational savings,

3) bounding of the steady state covariance matrix.

The state estimation will be asymptotically efficient in that a bound
will exist for the maximum mean square estimation error, and the
estimation will be asymptotically optimum when KX¥* actually minimizes

the trace of the steady state covariance matrix,
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5. COMPUTATIONAL RESULIS

To demonstrate the application of the estimators presented in this
paper two simple examples are considered, The first example involves
only the problem of parameter identification and demonstrates the con-
vergence rates of the three consistent parameter identifiers proposed in
Chapter 3. The second example presents a specific case in which the
open-closed loop observer of Chapter 4 yields better results than the

extended Kalman filter of Farison [4].

5.1 Example 1 - Convergence Rates of Consistent Parameter Identifiers

For comparison of the convergence rates of the consistent parameter
identifiers of Chapter 3 with the convergence rate of an estimator which
requires information about the initial state and the noise distribution
the fourth order discrete system presented in section 4,6 of Reference [27]

was considered. The system is described by the matrices

— - — -
0 1 0 0 0
0 0 1 0 0
F= 0 0 0 1 G = 0 H= [1 0 0 0]
(31 8 83 & L1
with a1=-0.656, a, = 0.784, a, = -0.18, and a, = 1.0.

As pointed out in [27] the equivalent z-transfer function is

23

(z2-1.8z:+ 0.8)(z2 + 0.8z + 0.8)

G(z) =

which, except for the numerator, could be considered as a hypothetical
missile with the short period and first bending mode included.

The problem is to identify the parameters 215 4y, ag5 and a .
Since F is nonsingular each of the identification procedures of
Chapter 3 can be applied. Computations were performed using an IBM 360
computer. The initial state of the system was chosen as zero in all cases.

Tables 5.1, 5.2, and 5.3 show the results of using the identifiers of
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Number of

Table 5.1

Samples S/N Ratio 31 a2 a3 34

10 5 -.61871 . 74622 -. 13465 . 94386
20 -.62132 71972 -. 14975 . 98330
40 -.67475 .76967 -, 14042 . 98806
70 -.65777 .78078 -.17209 1.00620
100 -,67117 . 79758 -.18008 1.00598
150 -.65796 .76809 -.17575 1.00331
200 Yy -.65833 77732 -.16900 . 99629
10 2 -.54664 .67158 -.06093 .86558
20 -.55864 .61782 -.09792 . 96476
40 -.68416 74600 -~,10354 .98236
70 -.67717 . 74593 ~-.15180 1,01122
100 -.68760 .81193 -.17961 1,01341
150 -.65236 .73935 -.15039 . 99760
200 ' -.66162 .76870 -.15184 .98993
10 1 -.35733 46797 .09088 . 73543
290 -.43247 .43566 -.00937 . 94280
40 -.68564 .70826 -.05821 . 98170
70 -.72002 .69083 -.06974 .98933
100 -, 70507 .82560 -,17830 1.02343
150 -.63477 .68840 -.09717 .98301
200 ] -.66632 . 75542 -.12210 . 97844
1 @ -.65600 .78399 -, 18000 1.00001
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Table 5.2

Number of ~ a A o

Samples S/N Ratio ] ) 23 &
10 5 -.75381 .98018 -.36200 1.06755
20 -.71687 .88474 -. 17404 .94500
40 -.60332 .69874 -.12968 .97300
70 -.60682 . 70240 -.13137 .97772
100 -.61077 .72178 -.17683 1.01035
150 -.63216 14779 -.16420 . 99449
200 v -+.63889 . 76582 -, 18761 1.00712
10 2 -.93273 .77086 .59831 .42505
20 -.09601 -.52864 1.29846 .22615
40 -.49969 .50117 . 04100 .88435
70 -.50574 .51703 .01068 .91039
100 -.51407 .56738 -.11166 . 99726
150 -.59100 .68052 -.12901 .98181
200 g ~-.59062 .67612 -.12112 .97907
10 1 -.45403 -.11971 .62848 . 75416
20 . 16403 -.12263 -.68309 1.54398
40 -1.20981 1.22876 1.07037 -.23569
70 -.24380 -,12720 . 73067 .54325
100 -.24617 .06768 .23425 .86865
150 -.43011 .35667 .13178 .87719
200 v -.43971 .33459 .22726 .81612
1 © -.65625 . 78540 -.18214 1.00084
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Table 5.3

Number of ~ N ~ "
Samples S/N Ratio 8 2 83 8

10 5 -.69009 .86722  -.26875 1. 03464
20 -.69853 .89274  -,24852 .99675
40 -.60864 64691  -.05688 . 96387
70 -.63072 .66182  -.04608 . 96086
100 -.64618 .72998  -.13518 . 99886
150 -.65741 76717 -.17021 1.00722
200 ] -.65375 .76782  -.18405 1.01648
10 2 -.82304 1.08218  -.37869 1.05067
20 -.92197 1.35181  -.49124 .99950
40 -.48903 .36778 14923 .91866
70 -.56576 44138 . 14693 . 92145
100 -.58957 .57003  ~-.03333 .99798
150 - .62833 .66540  -.11423 1.02252
200 Y -.62006 .67268 -.16364 1. 06056
10 1 -1.20331 1.60579  -.45515 . 95444
20 2.92358  -5.22095  1.62671 1.65619
40 -.29253 -.11536 .57866 .77359
70 -.47436 .10945 47281 .83593
100 -.49057 .25693 .22080 . 95620
150 -.54094 .35681 . 08825 1.04121
200 ] -.52029 .32918 ,01751 1.12331
1 w -.65918 .78979  -.18506 1.00146
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sections 3.2.2.a, 3.2.2.b, and 3.2.2.c, respectively, for various signal

to noise ratios. 1In figures 5.1, 5.2, and 5.3 the normalized errors

a2
R ?(ai—ai)
- - 1
p L a?
A §
i

associated with these tables are plotted. 1In each figure it is apparent
that the larger the signal to noise ratio the faster the convergence.
The convergence rates obtained compare favorably with those in Reference

[27].

5.2 Example 2 - Open-Closed Loop Observer

To study the operation of the open-~closed loop observer the simple

scalar system

x(k+1) ax(k)

z (k)

x(k) + v(k)

was considered, The statistics used in simulations on the IBM 360
10.0, a(0) = 1.2, cx(o|0) = .5, 0,(0) = .1,
10.0 with the distributions of the initial

it

computer were %(0}0)
E{v(i)} = 0, and G,

state, of the parameter a, and of the noise being Gaussian (Gaussian

it

statistics were chosen so that comparison with Farison's solution would
be possible), Note that Ga(O)GX(OIO) << 3(0)%(0!0) so that Farison's
result should be applicable— it is not a requirement of the open-closed
loop observer, The gain of the open-closed loop observer was not chosen
as zero when ﬁN <1, but was chosen to yield a small steady state
variance in the state estimate., The parameter identifier of the open-
closed loop observer was started after three observations so that initial
noise in the observations would be less important. In general the perform-
ance of the observer of Chapter 4 and Farison's observer were comparable;
however, in several instances use of Farison's filter results in

erroneous estimates. In figures 5.4 and 5.5 results of a particular

computer run are presented which shows the poorer performance of the

Farison filter .- the data is presented in table 5.4.

67



¢ - &xl

e ll?

.0l

.000l

00001

O T T T T T T 3
i S/N = 7]
r S/N = -
i S/N =

— X -
- 3
k 4
b A P

X
- X —
L N
o a I
b O _d
- x i
A
— ° A -
- -
L o _
- 3
C o .
B ]
1 H 4 ! | i
10 40 70 i00 130 160 190 220
N
Figure 5.1

68



I ¢ - 5l

10.0

1.0
A
-
.0l
.00l
0001

C T T T T T T 3
s .
L. a S/N =5
% S/IN =2 .
S/N =]
— X X —
- .
i ]
b X P
- A _5
C a 3
Y ]
i a
C o —-:1
C 0 7
- 0 ]
L o _
1 1 L 1 { L
10 40 70 100 130 160 190 220

21

Figure 5.2

69



1.0 - T T T T T T
C .
L X ]
L ]
X 0 S/N =5
S/N =2 7
- x  S/N =1 .
A
- x -
a
X
a
R P -
£ j
b -l
» . ]
- -4
° o
N
1z
o= g — A -
e |F o N
'9‘-"‘"' - o~
—— - ]
(o]
.00} — ]
r—- —{
fm o —
000! I ] 1 | [ 1
10 40 70 100 130 160 190 220
N
Figure 53

70



The failure of the Farison filter may be attributed to the high
noise level and the fact that there is no driving noise to keep the
filter gain from going to zero; but these conditions are not precluded
in the general theory of the extended Kalman filter, Further study of
the relative advantages of the extended filter and the open-closed

loop observer seem desirable.
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(1

Table 5.4
aN aA‘N R(N/N) X(N/N)
N a C F x(N) OCL F
0 1,0388 1.2000 1.2000 10.221 10.000 10.000
1 1,2000 . 0980 10.624 5.023 . 186
2 1.2000 . 1647 11,035 7.795 .099
3 .2303 .1870 11.463 3.161 .022
4 .6142 .1928 11.908 3.245 .005
5 .3911 . 1926 12,369 1.008 .001
6 .3426 .1933 12.849 2,987 .000
7 .5934 .1934 13.347 3.806
8 .7063 .1934 13.864 4,638
9 .7883 14.402 5.690
10 . 7962 14.960 6.032
11 .7907 15.540 5.715
12 .8149 16.142 5.850
13 .8908 16.768 7.700
14 .8927 17.418 8.869
15 .8889 18.093 9.380
16 . 9117 18.795 10.272
17 L9144 19.523 10.834
18 . 9338 20,280 11.818
19 . 9885 21.066 14.583
20 | .8988 v 21.883 13,715 Y
o)
aNC = consistent estimate of a
§NF = egtimate of a wusing the Farison filter

fi(N/N)OCL = open-closed loop estimate of x(N) from N observations

}'E(N/N)F = estimate of x(N) from N observations using the Farison

filter
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6., CONCLUSIONS

6.1 Summary

A solution having desirable asymptotic behavior has been obtained
for the problem of simultaneously estimating the parameters and states
of linear systems. This solution has been obtained by separating the
inherently nonlinear problem into two parts, a parameter estimator which
does not depend on estimates of the state and a state estimator whose
dynamics can be chosen to yield a satisfactory bound on the steady state
mean square error when the system model is known exactly,

By analyzing the structure of minimal systems it was possible to
obtain a direct procedure for determining the minimal realizations of a
linear system from noise free input/output observations, Three proce-
dures, depending on different assumptions about the system structure and
the noise, were then presented which yield consistent estimatés of the
parameters when the input/output observations are corrupted by noise.
These estimators do not require state estimation or recursive calcula-
tion of any parameter associated covariance matrix for implementation,

The advantages of using constant gain observers are important- they
do not require knowledge of the initial mean or variance of the state;
they are less sensitive to modeling errors; and they give a significant
computational saving. When estimating the states of a minimal system
it is possible to choose the gain of the constant gain observer to give
prescribed error dynamics., A procedure for choosing this constant gain
has been established, which gives an upper bound for the steady state
mean square estimation error if the system model is exact,

When the gain of the observer is changed each time the model is
changed the observer is termed open-closed loop. If the model is
obtained from a consistent identifier the open-closed loop observer will
be asymptotically efficient —the steady state bound computed for the

mean square error will be correct.

6.2 Suggestions for Future Research

Some areas where further investigation might prove fruitful are

the following:
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1

3)

4)

5)

Determine the effect of the computer tolerance ¢ on the
identification procedure. 1In particular investigate the
possibility of obtaining the linearized model of a nonlinear
system which is operating in a nearly linear region by
appropriately choosing .

Study the effects of various choices of the times t, to be
used in the linear operator for continuous systems.

Evaluate the performance of a controller which uses the output
of the combined parameter and state estimator developed in
this dissertation,

Study the effects of changes in the rate at which the model
is updated,

Investigate the performance of the on-line identifiers when

the plant dynamics are slowly varying.
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