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1. INTRODUCTION 

1.1 Statement of the Problem 

This discussion is concerned with the problems of identifying the 
parameters and estimating the states of multiple input, multiple output, 
linear, time-invariant systems. The emphasis of the paper is not on 

obtaining expressions for optimal estimators which are difficult to 

implement or which rely on very restrictive conditions. Instead, various 
structural features of linear systems are utilized to obtain estimators 

which are computationally practical, have few restrictive conditions, and 

have satisfactory convergence behavior. 

The need for system identification and state estimation is clear. 
To effectively predict the behavior of a system it is necessary to have 
an accurate model. If the intent is to track or control the state of a 
system it is also necessary to have a good idea of what the state is at 

each time instant. Much of systems theory can be applied only after 
these estimation problems are solved. 

Although it would be desirable to have the ability to model and 

control arbitrary systems there are limitations to what can be done. 
Aside from the obvious limitation that not all systems can be controlled, 

one of the basic limitations is lack of information. This lack of 
information may take many forms-the statistical nature of the random 
phenomena involved may not be completely understood, the structural form 

of the system to be modeled may not be known, or the observations avail- 
able may be insufficient to describe the system. To fill the gaps in 
information assumptions must be made, and the goodness of these assump- 

tions will be reflected in the accuracy of the estimates. 
Restricting discussion to linear, time-invariant systems is not as 

severe a limitation as it might seem. Many nonlinear systems can be 
analyzed effectively by linearizing about various regions of operation. 
Also, time variations may be sufficiently slow to allow the system to be 

adequately represented by a succession of fixed models with each model 
holding during a finite time interval. 

work available for the analysis of linear systems and the resulting 
simplifications make the choice of this structural form desirable. 

The developed mathematical frame- 

The 
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d 
purpose of this paper is to explore various aspects of the structure of 
multiple input, multiple output, linear systems and to utilize the 
findings in the design of effective state and parameter estimators. 

1.2 Previous Work 

Much work has already been done in the areas of parameter and state 
estimation. At the foundation of the current state space approach to 

estimation and system description are the results of Kalman [Refs. lO,lS]. 
He presented a linear state estimator which is optimal from the standpoint 
of minimizing the variance of the estimation error. The conditions for 

which the filter was derived are rather restrictive-the system model 
must be known, the statistics of the initial state must be known, and 
the density functions of the various random processes must be Gaussian 

and have known statistics. Various papers have been published dealing 
with the accuracy and limitations of the Kalman filter, while other 

papers have considered ways of extending the results. 
Among the earlier efforts to extend Kalman's results are the work 

of Magill [Ref. 31 and Rauch [Ref. 61. Magill considered the problem in 
which the system model is one of a finite set of possible models. The 
extension of his theory even to systems where parameters are limited to 
finite intervals is not computationally practical. Rauch addressed the 

problemof estimating the states of a system with random parameters whose 
statistics are known. Though an interesting problem it does not answer 
the question of what to do when a system with constant parameters is not 
known exactly .) 

Two different approaches have been taken to eliminate the 

inaccuracies of the Kalman filter which result from modeling errors. 
Farison [Refs. 4 , 5 ]  and Kopp and Orford [Ref. 111 proposed an extended 
Kalman filter in which the uncertain system parameters are included as 
additional state elements and the inherently nonlinear equations are 

linearized about the expected value of this augmented state vector. 
The various conditions required for applicability of this solution are 
both restrictive and vague and, except for the special cases in which 
the nonlinearity disappears, results obtained using this method have 

2 
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not been completely favorable. Schmidt [Refs. 13,141 and Neal [Ref, 221 

proposed the addition of terms to the gain of the Kalman filter to 
account for system uncertainties and thereby prevent divergence of the 

filter. 

technique, it is essentially an ad hoc approach which may or may not 
workdepending on the size of the terms which are added to the gain. 

Although some good results have been obtained using this 

Several papers have been concerned with the determination of the 
system model from input and output observations, without reference to 

the estimation of the system state. The papers of Saridis and Stein 
[Ref. 211 and Wong and Polak [Ref. 261 present several techniques for 

the identification of single input, single output systems of known size. 
The identification work of Gopinath [Ref. 151 is the most general, 
dealing with multiple input, multiple output systems of unknown size. 

However, Gopinath's identification procedure does not take full advantage 

of the structure available and is therefore not as efficient or flexible 

as possible. 

1.3 Outline of New Results 

The new results presented in this dissertation are as follows: 

1) Two new methods, an algorithm and a direct procedure, for 
determining the minimal realization of a linear, time invariant system 

from input/output observations are derived. 

2)  The structure of the minimal realization obtained by use of 

the direct procedure is displayed. 

3)  A method is presented for obtaining the minimal realization of 

a continuous system without differentiating the inputs and outputs. 

4) Consistent identifiers are presented which estimate the system 

parameters from noisy input/output observations for various conditions 

on the system, the input, and the noise, 

5) The problem of obtaining a constant gain observer with arbitrary 
error dynamics is solved for a discrete system without recourse to 

canonical forms e 

6) A bound is derived for the steady state mean square estimation 
error resulting from use of a constant gain state estimator. A procedure 

3 



which utilizes this bound is presented for choosing a constant gain 

estimator with satisfactory error dynamics and steady state error. 
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2 .  PROBLEM FORMULATION 

2.1 Nodeling the Process 

A function f from A to B (f: A + B) is a mapping of each 

element of the set A into one and only one element of the set B. The 

function f may be specified in tabular form by listing all pairs (a,b) 

such that a& and b = f(a> E B ,  or it may be specified by an algebraic 
expression associating a 4  and bcB. An algebraic representation does 

not always exist, but when it does it is usually far more useful and 
practical than the tabular representation. Sometimes it is possible to 

deduce the algebraic representation from all or part of the tabular 

representation, depending on how much of the structure of the algebraic 
relationship is known. 

These concepts are important when considering the state space 
representation of a dynamic system C. Suppose T is the time span of 
interest, U is the space of possible inputs, X is the space of possible 
system states, is the set of transition functions, H is the space of 
output functions, and Y is the output space. Then C can be viewed as 

a function in the above sense and is specified by Z: (T,U,X,@,H) Y. 
Restricting attention to linear, time invariant systems the input and 

output can be related by the equations 

for a discrete system (k takes on integer values) or by the equations 

for a continuous system, where 

x = nX1 state vector 
y = pX1 output vector 
u = rX1 inpnt vector 

F = nXn state transition matrix 

G = nXr input matrix 

H = pXn output matrix 

5 
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A M  
and F, G ,  and H are time independent. To avoid repetition subsequent 

discussion shall be limited to the time invariant, discrete system of 
(2a1)9 indicating only the important results and differences for the 

continuous system of (2.2) in section 3.1.5. 
The triplet (F,G,H) forms an internal description of Z. 

Equations (2,l) constitute an algebraic description of the system. In 
functional notation we have Z: (K,U,X) 3 Y, where K is the set of 
discrete time instants of interest. 

Suppose an internal description of Z is not available, but a 
record of input-oiitput pairs [u(k), y(k)] is. Since the specification 
of the state at some initial time instant k and the knowledge of all 
inputs for k 2 k will determine the outputs y(k) for k 2 ko accord- 
ing to (2-1)$ this record of input-output pairs will be part of the 
tabular representation of C. We shall call the sequence of [u(k), y(k)] 

an external description of 
used to refer only to the special case of an impulse response, which seems 

to be an overly restrictive use of the term. The question now arises 
whether we can obtain an internal description from the external description. 

When the observations of input/output are corrupted by noise we would like 
to obtain an estimate of the internal description and state of 

topics are the subject of Chapters 3 and 4 .  

0 

0 

C - the term "external description" is often 

C. These 

2,2 PlIinimal Realization of the System 

The internal description of a discrete dynamic system C which is 

characterized by (2.1) is not unique. 

H ) constitutes an internal description or realization of Z then so 

will the triplet (F ,G ,H ) where 

It is well known that if (F1,G19 

1 

2 2 2  
-1 F2 = TFIT 

G2 = TG1 

-1 H2 = HIT ( 2 . 3 )  

The two realizations are said to be equivalent under the transformation 

indicated symbolically 
T, 

6 



Equivalent realizations are not the only kind. The number of states 

associated with a given realization is the number of elements of the 
state vector x(k) and it is called the dimension of the realization. 
Two realizations of the same system can have different dimensions - they 
will have the same input/output behavior but they will not be equivalent. 

Definition 

A realization (F,G,H) of Z is minimal if its dimension is less 

than or equal to the dimension of any other realization of Z. 

If (F,G,H) is an n-dimensional realization of a system having r 

inputs and p outputs then the dimensions of F,G, and H are nXn, 

nxr, and pxn, respectively. 

Definition 

A? n-dimensional realization of Z is completely observable iff it 
satisfies the rank condition 

HF 
= n .  

1 1 
sat is f ies the 

PEG FG e 

Definition 

An n-dimensional realization of Z is completely reachable iff it 
rank condition 

n- 1 . . F  G]=n. 

= m the realization of Z is completely observable iff 

‘ H  

P i l n  

= n  

-m 1 
7 



Proof of Lemma 2,l 

Obviously if the above rank condition is satisfied the system is 

completely observable. 
introduce the following proposition. 

To show the necessity of this rank condition we 

Proposition 2 1 

If 

P 

then 

H 
HF 

= P  

HF 

P ':.I=. HFs for all s 2 q . 

Proof of Proposition 2.1 

Q+l The fact that the rank is not increased by the additional rows HF 

implies 

HFq+' C: span(H, HF, * . .  , JQq> 

where the span of (H, HF, . . . 9  HFq) 

of the rows of H,HF,. ,HFqa From this it follows that 

is the set of all linear combinations 

Q HF' c span (H,HF,.,. 2~~ ) for all s 2 q,  

S 
so that the additional rows 
rank and 

HFq+', HFq+2,...,HF will not change the 

H 

l = t  for all s 2 q.  

8 



Returning to the proof of the lemma, if 

P = t < n  

then, since p(H) = m , there exists a q <n-m such that 

i (if not each set of p rows H F  , i n-my would contribute a row 
not in span (H,HF,  ..., HF ) and i-1 

P 

would have to be n). 

Then 

and it follows that 

p": * n-1 ] = t < n  

which contradicts the observability of the system, Therefore, if the 

system is completely observable 

9 
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Thi - completes the pr 
Lemma 2.2 

If p(G) = R the realization of Z is completely reachable iff 

p[G FG F n-RG] = n, 

The proof of this lemma is similar to that of lemma 2.1.. 

(L 1 Properties of Minimal Realizations 

1) All minimal realizations of Z are equivalent. 
2 )  Any minimal realization fo Z is completely reachable and completely 

3 )  If a realization of Z is completely reachable and completely 
observable e 

observable it is a minimal realization. 

Since we cannot hope to identify states which are unobservable and 
since for all practical purposes there is no point in specifying more states 
than can be controlled, we shall be satisfied to obtain a minimal dimension 
realization of Z from its external description. Since the minimal 
realizations are similar any one will suffice. 

2.3 Separation of the Parameter Identifier and State Estimator 

When noise free observations of the inputs and outputs of a system 

satisfying (2,1) are available it is possible, as shown in section 3.1 ,  

to obtain a realization of the completely observable and completely 
reachable portion of the system and to determine the state associated with 
this realization exactly. 

systems so that only a finite portion of the external description is 

needed to yield the minimal realization. 

We shall deal only with finite dimensional 

If the input/output observations are corrupted by noise the problem 

becomes one of estimation - wenmust estimate both the parameters and the 

("Lemma 2.1 will be used in section 3,1 to reduce the number of output 

(2)F'roofs of the properties appear in ref. [15]. 

observations needed to obtain a realization of the system. 



I '  

i, 

states. By manipulating (2.1) it is possible to obtain an expression 

relating the realization and the inputs and outputs which does not 
involve the state vector x(k). 

the state vector without involving the parameters since the state vector 
is inherently parameter dependent by virtue of the difference equation. 
These considerations suggest the possibility of breaking the problem 

into two parts - obtaining an estimate of the parameters from the inputs 
and outputs and using the estimated parameters together with the inputs 
and outputs to estimate the state. This is shown diagramatically in 

figure 2.1. 

No such capability exists for expressing 

Figure 2.1. Parameter and State Estimator for Constant, Linear, 
Discrete System. 

There are several advantages to this separation. By estimating the 
parameters from only input/output observations €he nonlinearities result- 

ing from coupling between the parameter and state estimates is avoided in 
this phase of the identification (the nonlinearities will appear in the 

estimation of the state vector). Since the state estimator operates when 
the system estimate is fixed or time varying, it is not necessary to 
update the system estimate after every observation - as the system estimate 
converges to the true system description it is computationally practical 
to update the model less frequently. It is often desired simply to obtain 
a model of a given system without regard to its state so that using a 

scheme in which the parameter estimate does not depend on the state 
vector estimate precludes unnecessary computation. 

Desirable features for the parameter and state estimators to have are 

that 

1) the estimators be computationally practical for a wide class of 

noise statistics 
11 
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2) the parameter estimator be consistent and have a satisfactory 

convergence rate 

the state estimator have a satisfactory bound for the steady 

state error covariancee 
3)  

It will be seen that the parameter estimators derived in Chapter 3 and 

the state estimator of Chapter 4 have these features. 

12 



3, PARAMETER IDENTIFICATION 

3.1 Noise Free Input/Output Observations 

3 , l . l  Direct Relation Between Input and Output 

The system equations ( 2 , l )  can be written as 

If H is the identity matrix y(k) = x(k) and the first of equations 
(3 .1)  becomes 

which is a direct relation between the input and output-it does not have 
the state vector x(k) appearing explicitly. Using (3.2) we can obtain 
[F,G] from the relation 

y(k) . . . y(k+nf-r-1) 
k= 1 k= 1 u(k) e . . u(k+mt-r-1) 

N 
[y(k+l) e e . y(k+n+r)] = [F GI (3.3) 

Whenever the matrix multiplying 

is a unique solution for [F GI. 
completely observable (H is not necessarily the identity), it is possible 
to obtain an expression similar to ( 3 . 2 ) ,  involving the inputs, outputs, 
and system parameters, but not the state vectors. 
general expression (viz. eqn. (3.4)) which involves the selection of a set 
o f  output observations, it is necessary to introduce the concept of the 

selector matrix. 

[F GI in (3.3) has an inverse there 
In the general case when the system is 

Before giving the more 

Definition 
A selector matrix S is a k x A matrix (k S A )  with the property 

that when multiplying and R x m matrix A the resulting k x m matrix 

SA consists of k of the rows of A ordered as they are in A. 

The above definition implies that S = [s..] will have the properties 
1 J  

1) sij = o or 1 V i 9 j  
13 



V i  there  i s  one and only one value of j ,  j such tha t  i' 2 )  

Using the se l ec to r  matrix we see tha t  i f  a p X q matrix R has rank 

r ( r  S p ,  r 5 q)  then there  a re  two se lec tor  matrices St, an r X p  

matrix, and S 2 >  an r X q matrix, such tha t  SIRS; i s  nonsingular. 

I f  r = q then S2 = I, and i f  r = p then S1 = I. 

Not at  ion 
S ( i 1 2  i2' e im) s h a l l  be used t o  specify tha t  se lec tor  matrix 

which de le tes  the rows i19 i2' . . e , im from the matrix i t  mult ipl ies .  

For a completely observable system there  e x i s t s  a se lec tor  matrix 

S such t h a t  

where 

T 2 (k) 4 [uT(k) uT(k+l) . a . u (k+n*-l)] nJc 

A R = -FSS(pn* + 1, . , p(n%-l))Rn*+ SS(1,2, . . . , p )  Rn, 

0 o . . e . . o  

HG O . . . . . O  

HFG HG 0 a e 0 

HFn*-2 

*p*- 1 
G o .  e HG 0 

G . a HFG HG 

( 3 . 4 )  

n* = n-p(H)+l 

14 
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The derivation of (3 .4)  using n instead of n* is given in ref, [15], 

but for completeness and because of the differences in using n* the 

derivation will be given. 

From (3.1) we obtain by enumeration the equations 
Pg 

n*-1 n*-2 y(k+n>k-l) = HF x(k) + HF Gu(k) + . . . + HGu(k+n*-2) 
- - 

s1 - Utilizing the definitions of 7 (k), un,(k), RngC and letting n* 
S(pn*+l, e . . , p(n;k+l)) equations (3.5) can be written in the 

compact form 

Now since the system is completely observable it follows from Lemma 2.1 
and the comment following the definiton of a selector matrix that there 
exists an n x n*p selector matrix S such that 

H 
HF 

= T is nonsingular. 

n*- 

( 3 . 7 )  

It can be assumed that the basis of the internal description is such that 
T = I since a change of basis will not effect the external description. 

Multiplying ( 3 . 6 )  through by S under this assumption yields 

15 



Using ( 3 * 1 ) ,  ( 3 . 7 ) ,  ( 3 . 8 )  and the definition of R and letting 
S2 = S(1,29e.e,p) we then obtain 

w 
Synsi(k+l) = x(k+l) + SS1Rn*Gn,(k+l) 

= Fx(k) + Gu(k) + SSIRn*Zn*(k+l) 

HFn* - 1 

which verifies equation ( 3 . 4 ) .  

Using ( 3 . 4 )  we have then 

- - 
- ...yn, (k+n+rn*-1) 

- 
(k). ..u,*(k+n+rn*-l) - 

(3.9) 

S [yn,(k+l) e . .  ynik(k+nkrn*) ] = [F,R] 

We can write ( 3 . 9 )  compactly as 

where the correspondences are obvious. Note that $ is a (rn* + n) X 

(r + p)n* selector matrix, A unique solution for [F,R] exists when- 

ever $B (k) is nonsingular. For ,5?B (k) to be nonsingular Bn,(k> 

must have rank n + rnf:# 
nf: n* 
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a 3 .1  

For any selector matrix 

i f  $Bn*(k) is nonsingular the associated S satisfies the property that 

= T  (3.11) 

is nonsingular (where T can be taken as the identity matrix without 

loss of generality). 

Proof of Lemma 3.1 

k) .  . .x(k+n+rn*-1) 
*(k) e .  .Gn*(k+ntm*-l) 0 

Irn* -1 

Since the rank of a product of two matrices is less than or equal to the 
rank of either factor 

17 



H 

HF 

I 
I 
I 
1 SSIRn* 

+ - - .  

I Irn* - 

- 

If $Bn*(k) is nonsingular p[SBn*(k)] = n + rn*. Therefore 
$B (k) nonsingular implies that n’k 

S 

is nonsingular, 
This comDletes the Droof of Lemma 3 . 1  

3 . 1 , 2  Algorithm for Determining a Minimal Realization 

We shall now investigate various properties of the matrix B (k) n’v a given by 

(3.12) 1 - - 
(k) yn*(k+l) e e yn,(k+na+rn: - 1) 

a 

a a a 

- a - 
(k) un*(k+l) . . u n* (k+na+rn: - 1) Bn,(k) = 

a 

where n is an assumed minimal dimension of the system and does not 
necessarily equal the true minimal dimension. This investigation leads 
to an effective technique by means of which the true minimal dimension 
of the system and the matrices S and [F,R] may be obtained. 

a 

Theorem 3 . 1  

If the assumed minimal dimension of a system, n is greater than a’ 
the actual minimal. dimension, n, then 

18 



Proof of Theorem 3 .1  

x(k) .  . - 
H 

x (k+n,+rnP- 

- 
u ( k+na+rn;- 1 ) 

R* a 

where S1 = S(pn; + 1, pn; + 2 ,  . . e , p(n:+ 1)). For simplicity 

i n  la ter  discussions l e t  

L 

A 
Dn,(k) = 

a 

Since CR* i s  
a 

O ' Irn* J l a  

- - 
u (k) e . . . . . u (k+na+rnp-l) n* n* 

a a - 

(3.13) 

(3.14) 

and 
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Therefore, 

a p[D (k)] S rn* + n < rn* + n 
n* a a a 

and thus 

p[Bn,(k)l < na + rn; e 

a 

This completes the proof of Theorem 3.1. 

Theorem 3.2 

If the system Z is completely observable and completely reachable 

a' and the assumed minimal dimension, n equals the actual minimal 

dimension, n, then for almost all input sequences {u(i)) 

Proof of Theorem 3.2 

A s  in the proof of the preceding theorem we observe that 

Now 

I 
l o  

1 x(k) . x(k+n a a  +rn*-1) 
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. '  
= *  

Assuming the u(i) are random variables with no concentrated probability 

mass in the joint distribution, Lemma A2 of reference [15] implies that 

1 p(k) . ., e . x(k+n+rn*-1) a - 
lGn*(k) e . . u n* (k+n+rn*-ld a 

a a 

is nonsingular for almost all input sequences. Thus, since n = n a 

1 p(k) . . . . x(k+na+rn:-l) 

will be nonsingular for almost all input sequences. Therefore, 

Since the system is completely observable and n = n a 

nd 
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p[Bn,(k> 1 = na + rn* a a 
This completes the proof of Theorem 3.2. 

Theorems 3,l and 3 . 2  provide a means for determining the minimal 
system dimension, an appropriate selector matrix, and the matrix 

[F,R] for almost any input sequence when an upper bound on the actual 
minimal dimension exists. 
dimension exists it is not possible to determine n with certainty; 

more will be said about this after the procedure to be followed when an 
upper bound does exist is presented. Before describing the procedure 
for obtaining n9 S, and [F,R] it is necessary to make the following 
definitions. 
Definition e' 

If no upper bound on the actual minimal 

A matrix is said to be in row-echelon form if the first nonzero 

element appearing in row i is a 1 in column k and in column ki 

the only nonzero element is the 1 in row i. 
i 

Any matrix can be put into a row-echelon form by repeatedly using 

the elementary operations of multiplying rows by nonzero constants and 
of adding multiples of rows to other rows. 

Definition 

A row-echelon form is normal if for all rows i,j containing 
nonzero elements 

for i < j  
j 

ki < k 

where ki k are the columns containing the first nonzero elements 
of rows i and j respectively.. 

j 

Definition 

If in obtaining a normal row-echelon form the restrictions that 

1) until no further eleminations are possible a multiple of row k 
may be added to row R only to eliminate the jth term in row 

R, where the first nonzero term in row k is the jth term, 
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2 )  i f  row k i s  used t o  e l iminate  the j th  term i n  row ,!J it 

must be used t o  e l iminate  the j th  t e r m  i n  every other  row, and 

3) nothing i s  added t o  a row of zeros 

are imposed, t h e  r e su l t i ng  form i s  an i d e n t i f i e r  form. 

The YOWS of t he  i d e n t i f i e r  form which have nonzero el cent 8 idetnt i fy  

the  corresponding rows of t he  o r ig ina l  matrix as comprising a l i n e a r l y  

independent set ( the  l a rges t  independent set ,  though not necessar i ly  

unigue). 

follow we introduce the  matrix operator d(.) which operates  on a matrix 

t o  y i e ld  an i d e n t i f i e r  form. 

Since we.-shall use t h e  i d e n t i f i e r  form i n  much of t he  work t o  

I f  i n  obtaining the  i d e n t i f i e r  form w e  impose the  addi t iona l  
t h  r e s t r i c t i o n  t h a t  row k may be used t o  e l iminate  the  terms i n  the j 

column only i f  row k 
terms before the  j t h  

dl(0). I f  i 

and it 

The f i r s t  i d e n t i f i e r  form y ie lds  the  earliest l i nea r ly  independent set of rows. 

i s  the  f i r s t  row with a nonzero j th term and a l l  

are zero then we ob ta in  the f i r s t  i d e n t i f i e r  form 

i s  the  j th independent row of the  f i r s t  i d e n t i f i e r  form 
j 

i s  t h e  j th independent row of any o ther  i d e n t i f i e r  form, i s i!. 
j j J  

Example 

Consider the  matrix 

B =  

Then t h e  matrices 

3 

1 0  0 

0 1 0  

0 0 0  

0 0 1  

are respect ively a row-echelon form associated with B ,  an i d e n t i f i e r  

form of B,  and the f i r s t  i d e n t i f i e r  form of B. Note t h a t  theindepen- 

dent rows of t he  row-echelon form with ones i n  the  f i r s t  t h ree  rows do not 
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correspond to a linearly independent set of rows in B. 

Definition 

Given any p X n matrix C = [c..] the rotation of C, rC, is 
=J 

specified by 

c = [c 1 r j (p-i+l) (3.15) 

th is given as rm 3 
The rn . rotation of C, abbreviated as 

c =  [ [  ...,, cc13. * * 1 (3.16) m r r  r 

where m is a positive integer. Clearly r4c = C 
with s any positive integer and t = 0,1,2, or 3 

so that if m = 4s + t 

c =  m r r (3.17) 

Using the above definitons and Theorems 3.1 and 3.2 we now present a 
stepwise procedure for determining n, S, and [F,R]. 

Procedure 3.1 
- 

1) Set na = N, the upper bound on the actual minimal dimension. 

2) Construct the matrix Bn,k(k) from observations of the input and 
(1) a output vectors . 

3 )  Obtain 41(r2Bn*(k))e (2) 
a 

4 )  If p[La ( B (k))] < na + rn* reduce n by 1 and repeat 1 .2 n: a a 
steps 2) and 3). If p[41(r2Bn:(k))] = na l- rn* - there will 
be a 1 in each column of J1[r2Bnz(k)] with no two 1's in 

the same row-then n = n and 

a 

a 

(')If p(H) is not known and cannot be determined, but it is known that 

p(H) 2 q ,  use n-ql-1 in place of n* -this will only cause the 

possible use of more data than was necessary. 
a 

(2)If the first rn: elements on the main diagonal of 9 ( B *(k)) are 1 r2 na 
not all 1's the u(i) sequence is inadequate and a new Bn,(k) must -- a be constructed from a new input sequence. 
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from which we easily obtain S as 

T s = s(n+l,n+2, . . n-i-rn*)$ s (pn*+l,pn*+2, . . e (p+r)n*) 
(3 .19 )  

and 

(3 .20 )  

where An,(k+l) is constructed from the input-output observations. 

As shown in ref. [15] pp. 36-38 G can be obtained from [F,R] 
using the relation 

(3 .21 )  

- -  - 
where R is partitioned as [RoR1 . . . Rnn-l] with each Ei an 

n x m matrix. (The derivation in [15] uses n instead of n*, but 
will be the same when n* is substituted.) The matrix H is found by 
solving the n equations 

S (3.22) 

using the S and F matrices found above. 

I_ NOTE: 

procedure must be modified. In this case start with na = p(H) and con- 
tinue to increase it until the condition 

satisfied; this n may be the minimal dimensfon. If na satisfies 

the condition that p[Bn*(k)] = na + rn* and for n: = na + a ,  
P[Bna :*(k)] < n: + rnA* V R  2 1 

If an upper bound on the minimal dimension is not known the above 

p[Bn,(k)] = na + rn* a is 

a 

a a 
then na is the minimal dimension. 
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'. 
L 

In practice it is only feasible to test the rank condition on n' for 
R s L, so that n will not be the minimal dimension if the system 

contains time delays greater than Le For the purpose of obtaining a 

realization of the system, if n satisfies p[Bn,(k)] = na + rn* and 

a 
a 

a a 
n' = n + R satifies p[Bn,,(k)] < n: + rn'* V a  R S L (where L is 
chosen sufficiently large), then n is used as the minimal dimension in a 

a a a a 

the above procedure; the resulting F, G, and H matrices may not be 
correct, however. 

Procedure 3.1 involves the manipulation of the matrix B (k) to ni 
obtain a form from which it can be determined whether n = n and from 

which an appropriate S is easily obtained when n = n. This procedure 

differs from Gopinath's procedure in which for each choice of 
(starting with the upper bound for n) 
searched for one which satisfies Gopinath's nonsingularity test and if 
one exists it is an appropriate S and n = n. Both procedures suffer 

from the fact that if the choice of 
by one and repeat the procedure, and we must continue this reduction of 

n until n = n. Thus, both procedures will require a great deal of a a 
computation if the upper bound on the minimal dimension (the initial 

choice of n ) 

a 
a 

n a 
a set of selector matrices is 

a 

na is not correct we must reduce it 

is much larger than the actual minimal dimension. a 

3.1.3 Direct Procedure for Determining a Minimal Realization 

A closer analysis of the matrix B (k) leads to the following 
n: 

theorem which yields an identification procedure offering significant 

computational improvement over the methods discussed above. 

Theorem 3.3 

If the system Z is completely observable and completely reachable 
and the assumed system dimension, n is greater than the actual 

minimal dimension, n, then for almost all input sequences {u(i)} 
a' 

p[Bn,(k)] = n + rn* . a a 
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Proof of Theorem 3 . 3  

From the proof of Theorem 3 . 1  we have 

Consider the submatrix E (k) 
n: 

of D.n*(k) given by 
a 

. .  I] HFn*- 1 

I 
I 
I 
I 
I 
- 

O I  'rn* 

. . u(k+d-rn;-l) 

. .  u [ k+n+ ( r+ 1 ) n;- 2 ] 

. .  

. .  u (k+rn;+n-l) 

x (k+ntm;- 1) 1 - 
n; 

Since C is completely reachable, the system described by ::: u (k+n:- 1) I + 

1 
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i s  a l so  completely reachable. Lemma A2 of r e f .  [15] then i m p l i e s  t ha t  

- 
Lun*(k) . . . u n* (k+n+rn;-ld 

a a 

i s  nonsingular f o r  almost a l l  input  sequences. Therefore, 
Fs 

P n + rn* a 

where the  l a s t  equal i ty  follows from the complete observabi l i ty  of the  

system. Since p[D (k) ]  2 p[En*(k)] i t  follows t h a t  
nri a 

p.[Dn*(k)] = n + rn* a a 

This completes the  proof of Theorem 3 . 3 .  

- 
Now consider t he  matrix B (k) given as  

n.3: 

- 
Bn*(k) = 

a 

u (k+na+rn*- 1) 

y (k+na+rn;- 1 ) 

u (k+na+rnz) 

y(k+n +m;) a 

a 

u [ k+na+ ( r+ 1) nz- 21 

y [ k+na+ (rl-1) n:-2 1 

( 3 . 2 3 )  
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- 
By putting B ,,(k) into first identifier form we can obtain n and an 

appropriate S. The procedure for determining n, S, and [F R] is 

then 

n; 

Procedure 3.2 

- - - 
1) Construct the matrix %,(k), where NJ; = N-p(H)+l and 

2 )  Obtain s,[F+(k)]. [The rR* rows of & (K) consisting of in- 
is the upper bound on the minimal dimension. 

N;? 
put observations will be among the independent rows and n of 

the first pn;? rows of B- (K) consisting of output observations N* 
will complete the set of independent rows.] 

3)  n = (number of independent rows of Jl[%*(k)])- rN* . 
4 )  Construct the pn* X n submatrix E of J,[Er*(k)] consisting 

of the first pn* output rows and the first n columns not 

containing 1 ' s  associated with input rows. 

- 

s = ?  (3.24) 
5) Construct the matrices An,(k+l), B,,(k>, and $ and obtain 

F and G using (3.20) and (3.21). 
This procedure has the advantage that in one iteration n, F, and G 
are determined. 

Because S given by ( 3 . 2 4 )  will have its 1 ' s  in the earliest set 
of columns much of the structure of H and F will be known once S 
is determined. Partition as 

(3.25) 

n* 
where each Ki is p X n. Let qi = p(Ki). Clearly, qi = n. If 
- 
SI is the q1 x p selector matrix such that i= 1 

9 

- 
SIKl = [I I 01 

91 I 

2 9  

(3.261 



4 

then 

(3.27) 

where H has the form 

H = [H1 01 (3.28) 

Designating the rows of H which are selected by s as principal rows, 

it is obvious that each of the other rows is a linear combination of the 

principal rows preceding it; this linear combination can be determined 
quite simply from a record of the output. 
form 

1 

When q1 = p, H will have the 

H = [ I  ' 0 1 .  (3.29) 
P I  

Now let F be partitioned as 

F =  (3.30) 

is qi X n and T is the minimum integer such that Fi where 
we can construct the sequence of selector matrices 

with i = 1,29e.e,~ such that 
{si} i= 1 

(3.31) 

This sequence of selector matrices will then satisfy the property that 
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(3 .32)  

This will specify (n-ql) rows of F. When q1 = 1 the F matrix 
will be in companion form. 

If an upper bound on the minimal dimension does not exist, procedure 
Clearly, if for all N 2 No, n = p[iN*(k)] - rN* = 

6 3.2 must be modified. 
constant, then 6 = n. In practice values for N would be chosen until 

N - 6 2 L where L is chosen to account for possible time delays in the 
system. If L is not large enough fi will not be the minimal dimension 
and the realization will not be correct. 

NOTE: In obtaining 8 [E (k)] it will be necessary to choose a number 
E- such that any number whose absolute value is less than E will be 
taken to be zero; this is to account for computer round off error. An 
appropriate choice of E will allow the identification of a system which 
is nearly linear, i.e., we will obtain a model corresponding to the 
linearization of the actual system. 

this technique has over others. 

I N* - 

This last point is an advantage which 

When is large it may be advantageous to first find the minimal 
dimension, n, and then find the selector matrix from J,[fin,(k)]. For 

this purpose consider the matrix 

Proposition 3.1 
If the minimal dimension., n, is less than % then for almost all 

T input sequences the matrix Q- (k) %*,,(k) will be nonsingular for 
q I; n + rq* N*,q 

and will be singular for q > n + ry*. 
Proof of Proposition 3 . 1  

In the proof of Theorem 3 . 3  it was shown that 
(k) is a submatrix of Q- 

p[Enj;(k)] = n + rn* 
(k) so that 

a' 
a 

N*, (rrtriv7t.I where n 5 ne Now a 
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(k) has full rank. Thus any subset of the columns of 
(k) will be linearly independent and ~[Q~+~,~(k)l = q, 

QE* (n+rK*> 
Qf*, (n+rF*> 
Vq I: r+rR*. Since for any matrix A, p(AA ) = p(A) ,  it follows that T 

Qg*,,(k)Q-q(k) T will have full rank and thus be nonsingular for 

The matrix Q- (k) is simply Bm*(k) and it follows from N*, (&rK*) 
Theorem 3,3 that ~[Q~*,(&~~*)(k)l = n+rr*. Since '[QK*, (n+rFk) (k)l = 

?3+ this means that the columns (n+rk+l), (n+rf+2>, e , 
(&rK*) of Q+, (&rc*) (k) are linearly dependent on the first (n+rfi*) 

columns, and so P[Q~*,~ (k)] < q for q > n+rE*. Therefore, 
T 

(k)QN%c,q(k) will be singular for q > n+rI*- QK* 2 q 

This completes the proof of Proposition 3.1 

Proposition 3.1 implies that the minimal dimension can be determined 
T by finding that value of q such that Q- N*,q(k)s*,q(k) is nonsingular 

T and Q- 

value of q satisfying this condition, n is obtained from the equation 
n = q - rN*. Methods of searching for 6 which minimize the number of 
computations required can easily be determined. 

(k) is singular. Then, letting be the N*, (q+1) (k)QiT*, (q+1) 
- - 

When n and S are determined directly from 9 [B- (k)] the 
rn 1 N* 

property that Qi*, (n+rf*) (k)Qgk, (n+rf*) (k) 

Q+, (n+l+rf*) (k)Q~*, (n+l+rf*) 

is nonsingular while 

(k) is singular can be used to check the T 

minimal dimension obtained, 

3 . 1 . 4  Example 

Consider the system C given by 

with 
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Then f o r  the  input sequence 

~ ( 0 )  = -1, ~ ( 1 )  = 2 ,  ~ ( 2 )  = 3 ,  ~ ( 3 )  = -6, ~ ( 4 )  = -2 ,  ~ ( 5 )  = 1, 

the  output sequence w i l l  be 

Y(9) = [::'I, y(10) =[-;I , y(l1)  = r:"] , 
Assuming the upper bound on the  minimal dimension of the system i s  

and assuming i t  i s  known t h a t  p(H) = 2 ,  w e  have N* = 3 and 

N = 4 

2 

0 

-1 

3 

0 

0 

-6 
-1 

4 

3 

0 

0 

-6 

-1 

4 
-2 

-1 

2 

-6 

-1 

4 

-2 

-1 

2 

1 

3 

-2 

-2 

-1 

2 

1 

3 

-2 

-1 

5 

-5 

1 

3 

-2 

-1 

5 

-5 
7 

3 

-9 

-1 

5 

-5 
7 

3 

-9  

0 

-2 

-6 

7 
3 

-9  

0 

-2  

-6 

1 

- 1 2  

-3  

Putt ing t h i s  i n t o  f i r s t  i d e n t i f i e r  form we obtain 
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A - 
1 

0 

0 X 

0 X 

0 X 

0 X 

0 X 

0 0 

1 X 

0 0 

0 0 

0 :I s = [ o  1 0 1 

1 0 0 

0 0 

Using this selector matrix we then obtain 

0 -1 -1 3 
4 2 -2  

3 5 

0 0 -1 -1 

0 4 

$B2(1) = 1: -: :l 
3 -6 -2 -1 

4 6 0  535 - 84 24 8 

85 16 0 -9  98 

275 275 -6 0 7 0  

- 155 -5 87 11 

165 90 9 27 

-9  

12 

Substituting these expressions into ( 3 . 2 0 )  yields 
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0 1 0 

2 -1 1 

1 1 0 

and using (3,21) and (3.22) we obtain 

"1 0 

0 

0 

0 

This internal description of Z is equivalent to the internal 

description given at the beginning of the example. 

The matrices K1 and K2 are 

K1 

from which we find by inspection 

- -  
It is easily seen that SI, .S2 together with the H and F matrices 

obtained satisfy (3.27) and ( 3 . 3 2 ) .  

3.1.5 Procedure for Determining the Minimal Realization of Continuous 
Sys tems 

For the continuous time system of (2.2) the equations analagous to 

(3.5) are 

2 
Y(2)(t) = HF x(t) + HFGu(t) + HGu(l)(t) (3 .33 )  

(t) = HFn"' 'x(t) + HFn*-2Gu(t) + . . . + HGu (nJ:-1) 
Y 
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di 
P 

where Y(i)(t) = 7 y(t). The equation corresponding to (3.4) is then 
dt 

(3.34) 

where 
m rn 

Mathematically it is now possible to obtain an internal description 
using either procedure 3.1 or 3.2 with y (t) and un*(t) replacing 

yn;(k) 
differentiating the signals y(t) and u(t) it is not feasible to use 
this solution. Fortunately it is possible to use a linear operator on 
both sides of (3.34) t o  yield an equation which involves no derivatives. 
We now present one such operator. To simplify the equations use will be 

made of the following definitions: 

- - 

a n* a - 
and Zn*(k). Because of the problems which are inherent in 

a 

t+t 

(3.35) dTn . * e  so ( 0 )  d.rld-r2 . . . 0 A - 
In(ty4 = 

(3.37) 

It can then be shown that the operator 

(continued) 
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I 

P 

(3.38) 

when applied to yti)(t) 

derivatives, f o r  i S n. 

will yield an expression which involves no 

Examp le 

For n = 3 (3.38) becomes 

Taking the initial time as zero and applying this operator to 

y(2)(t), y(’)(t), and y(t) gives 

~(~’(t), 

0 0 0  0 0 0  

0 0 0  

The expressions on the right are all free of derivatives. 
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Using the operator of (3 .38 )  on both sides of (3 .34)  yields Y 

(3 .39)  
It is then possible to obtain an internal description using procedure 3.1 

- 
or 3.2 with LnfcCtl, e . , tn,pyn.k -(%)) 2 Ln*(tl, 0 Ytn,,Yn*(t>), and - 
Ln;\(tl, . ,tnJc,u (t)) in derivative free form replacing (k+l), 
yn,(k) and Zn*(k) respectively. This will avoid all problems 
involved with differentiation. 

n* n;k - 

3.2 Identification from Noisy Input/Output Observations 

3.2.1 Description of System with Noisy Observations 

When the input and output measurements are corrupted by additive 
noise the identification procedure must be changed since noise terms will 

generally make the rank of Bn$(k), constructed from these noisy 
measurements, larger than it would be if constructed from noise free 

measurements. In the next section three distinct identification procedures 
will be presented. 
be made about the system, the input, and the observation noises. 

- 

These procedures differ in the assumptions which can 

The inputloutput description of the system will still be 

(3 .40)  

but instead of observing y(k) and u(k) we will have the measurements 

(3 .41)  

where v(k) and p(k) are the additive noises. We shall assume that 

v(k) and ,u(k) are zero mean, are independent of the input and output, 

and that 
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( 3 . 4 2 )  

To simplify proofs in the following sections it will be assumed that all 

random processes are ergodic. 

3.2,2 Consistent Identifiers 

A drawback to many optimal identification schemes, e.g., maximum 

likelihood, is that they must assume the noise processes are Gaussian 
to make the solution computationally practical. IR general this 
condition on the noises is not satisfied. Therefore it is desirable to 

have a computationally practical identification procedure which, though 
nonoptimal, is independent of the noise density functions and provides 

a convergence rate comparable to that provided by optimal identifiers. 
The consistent identifiers presented below satisfy these requirements. 

Definition 
A n n  

An identifier yielding an internal representation (FpJ9 GN1 $) 

from N noisy observations of input and output is a consistent identifier 

if 

where (F,G,H) is a minimal realization of the system. 

In discussing the consistent estimators presented in this section 

use will be made of the following definitions. 

-T A T  vn(k) = [v (k) vT(k+l) . . . vT(k+n-l)] 

$(k) 4 [;(k) pT(k+l) e . . pT(k+n-l)] 

(continued) 
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( 3 . 4 3 )  

It is obvious from ( 3 . 4 2 )  and the fact that the noises have zero mean that 

( 3 . 4 4 )  

To avoid unnecessary complexity we shall in this section assume that the 
structure of the system is sufficiently well known that an adequate 

selector matrix is available. In section 3 . 2 . 3  we shall discuss the case 
when an adequate selector matrix is not known. 

3.2.2.a Consistent Off-Line Identifier 

Suppose that after sufficient observations have been taken to 
N construct the matrices [xn*(l)-ji and [B,,(0)li the system is 

reinitialized and data is recorded to construct the matrices 
and 

procedure. Consider then the equation 

N 

[An,(l)]i+l 
N 

[Bn* ( 0 1 1 i+l corresponding to the (i+l)th iteration of this 

4 0  



N N 

i= 1 i= 1 

Now from the assumption of ergodicity and the fact that the noise 

processes have zero mean it follows that 

N 
1 lim ; 

N- 

The matrix 

i= 1 

$E{Bn+(0)) will be nonsingular if 

- I)) = rn*+n 
~ ( 0 )  . . . x(rn;k+n-l) 
- u n* (0)  a . . un,(rn++n-l) 
- - 

( 3 . 4 5 )  

( 3 . 4 6 )  

( 3 . 4 7 )  

From the discussion in section 3 . 1 . 2  it is apparent that ( 3 . 4 7 )  will be 
satisfied almost surely provided that for each i E{u(i)] be chosen 
from a nonlattice distribution. 

Taking the limit of the left side of ( 3 . 4 5 )  yields 

N 

Thus, provided E{u(i)) are chosen from a nonlattice distribution, the 
equation 

which is the limiting form of ( 3 . 4 5 ) ,  will have a unique solution for 

[F, R,]. It is apparent from taking the expectation on both sides of 
(3 .10)  that 

h A  

Therefore the identifier of ( 3 . 4 5 )  i s  consistent. For any N such that 
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N 

i= 1 

is singular the estimate [GN G] is not made, 
If no input is applied or if E{u(i)} = 0 Vi, it is possible to 

identify F consistently using 

N N 

(3.49) 
i= 1 i= 1 

n- 1 provided p([E{x(O)] FE{x(O)) e . . F E{x(O)}]) = n, which is 
satisfied for almost all E{x(O)} if F is cyclic. 

The off-line identifier has the advantage that it is not necessary 
to know the variances of the noise processes. The obvious disadvantage 
is that it is an off-line procedure and it is often desired to identify 
a system which is running or one which cannot be conveniently reinitialized. 

3.2.2.b Consistent On-Line Identifier 

Assume the covariances in (3.42) are known and define 

(3.50) 

Now consider the equation 

’ (3.51) ( k=l 
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t: 
.E 

From the assumptions of ergodicity and independence of signals and 

noise it is easily shown that the limiting form of (3 .51 )  as N tends 

to infinity will be 

(3.52) 

Provided the input sequence is such that 

the matrix multiplying 
will exist for 
by Bn,(k)$ it is apparent that 

[em i(,] will be nonsingular and a unique solution 
A h  

[F, R,]. Multiplying both sides of (3.10) from the right 
T T 

[G, ia] = [F R]  

so  that the identifier of (3.51) is consistent. 
This identifier has the advantage that it uses the data from a 

continuously running system, but it has the serious drawback that the 

noise covariances must be known. Errors in the covariances will result 

in bias in the parameter estimates. 

3.2.2.c Variance Free On-Line Identifier 

If the inputs are observed without noise and the observation noise 
on the outputs is such that for some finite nJ, 
it is possible in some cases to identify the system on-line without 

knowing the noise covariance. Define 

M, T (i) = 0 'Vi 3 lil 2 M-1 

(3 .54)  

and consider the equation 
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M N 

A s  N tends to infinity we have 

and 

Now from ( 3 . 4 )  it follows that 

M -  SYn,(k+M) = F SynJr(k) + FM-'Ru n* (k) + . . . 

so that 

+ 
rn 

E { SYn* (k);:' (k) RTP-' ' }+ 

. . .  + 

( 3 . 5 6 )  

( 3 . 5 7 )  

Therefore, if F is nonsingular and the input satisfies ( 3 . 5 3 )  the matrix 

will be nonsingular, so that [F, R,] is uniquely determined. For F 

nonsingular the matrix $Zn*( k,M) 
and multiplying ( 3 . 4 )  on both sides by Z:,(k,M)$T from the right 

will almost surely have full rank, 
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it follows that [F, R,] = [F R].  

When the inputs are observed with noise it is still possible to 
identify a system with a nonsingular F matrix provided that 1) for 

some P An,(i) = 0 vi 3 lil 2 P and 5n*(j) = 0 V j  3 ]j] 2 P-1, 

and 2) the input sequence satisfies the condition 
rn*. Under these conditions consistent on line identification can be 
obtained using 

- 

9 
p[E(un,(k)un,(k-P) 33 = 

- 

N N 

k= 1 k= 1 ( 3 . 5 8 )  

where 

and 

The choice of which consistent estimator to use depends on 1) the 
information available about the noise processes, 2) the singularity of 

the F matrix, 3 )  the ability to reinitiate the system, and 4 )  the 
amount of control over the inputs. Each of the identifiers presented 

has the advantage that it is computationally practical for a wide class 
of noise processes and not just gaussian noise processes. 

3.2.3 Consistent Determination of the Selector Matrix 

In the preceding section it was assumed that the system dimension 
and an appropriate selector matrix were known. When this is not the 
case n and S must be estimated from the noisy observations and these 
estimates, f$ and 
Consistent methods for determining n and S will now be given for 

each condition in the previous section. It shall be assumed throughout 

would be used in ( 3 . 4 5 ) ,  ( 3 . 5 1 ) ,  or ( 3 . 5 5 ) .  'N7 
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- 
this discussion that an upper bound N on the minimal dimension is 

known. 
N 

Because of the noise the rank of E- (k) will almost surely be 
N N* - - 

N+rE*. Suppose that [B&*(O) Ii corresponds to the ith reinitializing 

of the system, Then almost surely p([%*(0)li) = N + r%* for each i. 

However, averaging over i as the number of initializations becomes 
infinite, we have 

- N 

(3.59) 

When the conditions under which ( 3 . 4 5 )  is consistent are satisfied 

( 3 . 6 0 )  

For any finite value of N the rank of 

i= 1 

- 
would almost surely be N + rE*, However, it can easily be shown that 
the variance of each term of the matrix 

N 

i= 1 

decreases as 1/N. Therefore, for an appropriate choice of the tolerance 

used in obtaining the identifier form 

= n + rE* , for almost all N 2 N~ 
(3 .61)  

N 
N - 

[B$O) Ii +( f i= 1 

for some constant No" Theoretically the tolerance c1 could be chosen 

as a decreasing function of N, converging to zero in the limit. In 
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prac t i ce  E must always be grea te r  than zero t o  account f o r  the 

computer round of f .  For use i n  ( 3 . 4 5 )  

obtained using procedure 3 . 2  with 

and iN would thus be 

i= 1 

- 
replacing B&k) and the  tolerance chosen appropriately.  From ( 3 . 6 1 )  

it follows t h a t  

fi = n  

A f o r  almost a l l  N 
N 

SN = s 
1) 

( 3 . 6 2 )  

when E i s  chosen appropriately and from ( 3 . 5 9 )  and ( 3 . 6 0 )  

p{Ga = n l  = = SI = 1 . ( 3 . 6 3 )  

When ( 3 . 5 0 )  i s  used f o r  i d e n t i f i c a t i o n  6 and gN should be N 
determined from 

( 3 . 6 4 )  

where 

7 (k) 4 [vT(k) pT(k) vT(k+l) . . . v T (k+ni-rn*-1) - T  p (kt-ni-rn*-l)] 
n* 

The l i m i t  of ( 3 . 6 4 )  as N tends t o  i n f i n i t y  i s  
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Lemma 3 . 2  
* 

For any matrix X ,  i f  S i s  the  se lec tor  matrix with p(Sikj = 

p(X) and p[S"Sl(X)] = p(X>, then PCS*S1(XXT)l = P(x). 

Proof of Lemma 3 . 2  

Suppose X i s  pxq and has rank r e  The statement t ha t  p(S*) = 
s* p(X) simply implies t h a t  i s  an r x p  se l ec to r  matrix, and the  

f a c t  t h a t  p[S"'S (X)] = p(X) means t h a t  S* i s  tha t  r x p  s e l ec tu r  

matrix which picks out t he  r independent rows of S,(X). 
1 

T Since p(XXT) = p(X) , J1(XX ) w i l l  have r independent rows. We 

want t o  show tha t  these rows are the s a m e  as the independent rows of 

S,(X). Now i f  t he  ith row of X i s  l i nea r ly  dependent on the  rows 

preceding it ,  i t  w i l l  not be an independent row i n  S1(X); and designating 

the i t h  row of X by x i t  follows t h a t  the i t h  row of XXTy which 

i s  xiX ~ w i l l  be l i n e a r l y  dependent on the preceding rows of XX . 
Thus, a l l  zero rows i n  4 (X) w i l l  be zero rows i n  4,(XX and the  

independent rows must a l so  correspond. 

This completes the  proof of Lema 3 . 2  

T i T 

T 
1 

Lemma 3 . 2  i m p l i e s  t h a t  the  se l ec to r  matrix obtained from 

S1(g;*(k) G J k ) )  w i l l  be the  same as t h a t  obtained from S1(%,\(k)). 

Therefore, by appropriately choosing the tolerance E(N), the  estimates 

of n and S obtained using ( 3 . 6 4 )  should s a t i s f y  (3 .62 )  and i n  view 

of ( 3 . 6 5 )  w i l l .  s a t i s f y  ( 3 . 6 3 ) .  

Similar  considerations apply f o r  estimating n and S when (3.55) 
h 

i s  used f o r  i den t i f i ca t ion .  I n  t h i s  case ;hr and SN would be obtained 

from 

where 
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y(k+M-l-n*-l) . . . 
u(k+n+c-l) . . . u(k+n+(rtl)n>k-l) 

The tolerance E(N) has the effect of determing with what precision 
* A h  

the model (FN’ GN’ would match the output of the actual system 

(F?G?H). 

- NOTE: Considerations completely analogous to those presented in 

sections 3.2.2 and 3.2.3 are also valid for continuous systems. 
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4 .  STATE ESTIMATION 

4.1 Constant Gain Observer 

To estimate the state of a constant linear system Z described by 

x(k+l) = Fx(k) + Gu(k) 

from observations of input and output a convenient method is to con- 
struct another linear system ? given by 

where 

A ?(k+l]j) = estimate of x(k+l) based on observations of input and 
output up to time j 

( ? , E 9 ; )  = model of the actual system 

w(k) = noisy observation of input u(k) 

z(k) = noisy observation of output y(k). 

The state of 2. can be observed. The problem is to choose the gain 

K(k+l) so that the error x(k+llk+l) a= x(k+l) - %(k+llkfl) is made as 
small as possible - for noisy input/output observations 
chosen to minimize the trace of the error covariance matrix. 

N 

K(k+l) should be 

n h "  

If (F,G,H) = (F,G,H) and the mean and covariance of the state are 
then the Kalman filter solution will be known at some initial time 

optimal. When the model differs from the actual system, use of the 
Kalman solution would yield incorrect expressions for the covariance, 

and the gain sequence, which depends on the covariance, would in no way 
be optimal-in fact, use of this gain sequence may result in divergence 

of the actual and estimated states. Also, initial errors in the mean 
or covariance of the state cause the Kalman filter to yield incorrect 

expressions which might result in divergence. These limitations are 

ko9 
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quite important since model errors will generally exist and since 
accurate statistics on the state are usually unavailable. 

A constant gain state estimator, though sub-optimal, does not have 
these limitations since knowledge of the covariance is not required. 
This filter is less sensitive to model errors, though divergence may 
still result if the errors are large. In section 4.1.1 the case of 

noise free observations is considered, and it is shown how for a minimal 
system the constant gain may be chosen to yield almost arbitrary dynamics 

for the estimation error (arbitrary dynamics when F is nonsingular). 
Section 4.1.2 deals with the case of noisy observations, and criteria 
for choosing K are established. In both sections model errors will be 
neglected-these will be considered in section 4.2. 

4.1.1 Gain Selection for Noise Free Observations of Inputloutput 

For noise free observations, no model errors, and constant gain 

equations (4.2) become 

?(k+llk) = FG(klk) + Gu(k) 
<(k+l)k+l) = $(k+llk) + K[y(k+l) . -  J&(k+l(k)] . 

From (4.1) and (4.3) it is easily seen that 

N 

x(k+l Ik+l) = (F-KHF)z(klk) e (4.4) 

Theorem 4.1 

If the system is completely observable and F is cyclic and non- 

singular the gain K can be chosen so that (F - KHF) has a prescribed 

characteristic polynomial. 

Proof of Theorem 4.1 

Suppose the characteristic polynomial x(F) is 

n 
n n-i 

x(F) = s + ai S 
i= 1 
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and the desired characteristic polynomial X(F-KHF) is 

n 
n- i n 

X(F-KHF) = s + Pis 
i= 1 

Now, 

x(F-KHF) = det(s1-F + KHF) 
= det [ (SI-F) (I+( sI-F)-'KHF) 3 

= x(F)det[I+(sI-F)-lKHF] 

If the choice of K is restricted to those'gain matrices of rank one 
(i.e.2 K = cdT where c is an nx1 matrix and d is a pX1 matrix) 

then 

det[I+(sI-F)-'KHF] = 1 + tr [ (sI-F)-lKHF] 

x(F-KHF) = x(F) + tr[x(F) (sI-F)-'KHF] 
and 

i= 0 Using (4.5) it follows that 

i sn- i - 2 + ... + C F i s - i - l  Fi sn- i - 1 
+ 

- -  - X (F) i+l 
i= 0 i= 0 i= 0 S i= 0 

.n n- 1 i -i-l 
= (F +alF + e . . +an) Z F  s 

i= 0 

n-2 + (an-2 + an-sF + . . + F 1 s  

+ (al + F)sn'* + s n- 1 
(4.8) 
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From the Cayley-Hamilton theorem we have 

so that (4.8) becomes 

ti i= 0 

n-2 + (an-2 + an-3F + . . . + F 

+ .  . . 
) s  

i- (al + F ) s ~ - ~  + s n- 1 
( 4 . 9 )  

and substituting this into (4.7) yields 

+ tr(Fn-'KJ3F)] + [anm2 tr(KHF) I- . . . + tr(Fn-2KHF)]s 

+ . . . + [tr(~~~)ls~-' (4.10) 

Equating the coefficients of the various powers of s in ( 4 . 6 )  and 

(4.10) we obtain the following equations 

p, = al + tr(KHF) 
p, = a2 + al tr (KHF) + tr(FKHF) 

Equations (4.11) can be written more compactly as 

(4 e 11) 

b = a + A Y  
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w h e r e  

bT 4 
T a  a -  

A A =  

A 
Y =  

S i n c e  A 

1 

2 
a 

6 

a n- 1 

- 

* . P n l  

. 0 . an] 

0 

1 

a 1 

. 

a 
n-2 

t r  (KHF) 

t r  (FKHF) 

tr (Fn-'KHF) 

i s  nonsingular 

0 

1 

. .  

Y = A-'(b-a) 

Now, f o r  K = cdT w e  obtain 

i t r ( F  KHF) = t r ( H F i + l K )  

i+l T 
= t r ( H F  cd ) 

T i+lc = d HF 

0 . 0  

O @  . 

. a  1 

( 4 . 1 3 )  

(4.14) 

so  that 

54 



R 

c 

I dTHFn' ::I -1 Fc = A (b-a) (4.15) 

For almost any px1 matrix d the matrix 

A M =  

will be nonsingular. Therefore, after choosing an appropriate d, one 
for which M is nonsingular, c is found from the equation 

1 -1 c = F-h- A (b-a) (4.16) 

T and the gain K = cd , with c and d determined in this manner will 
produce the prescribed characteristic polynomial. 
This completes the proof of Theorem 4.1. 

Theorem 4.2 

If the system is completely observable and F is cyclic and 
singular, the characteristic polynomial of (F-KHF) will have no 

constant term but the gain 

arbitrary characteristic equation. 
K can be chosen to yield an otherwise 

Proof of Theorem 4.2 

The constant term 8, in (4.6) is given by 

= det(F-KHF) = det(1-KH)det(F) Pn 

55 



so that if F is singular (det(F)-- 0 )  pn = 0. In this case 

equations (4.11) reduce to 

p, = al+ tr(W) 

p = a + al tr(KHF) + tr(FKJ3F) 2 2 

- - + a tr(KHF) + . . . + tr(Fnm2KHF) pn-1 an-l n-2 

which can be written compactly as 

where 

-T A b = [P, P2 ’ 9 * Pn-ll 

n- 1 

0 . .  
1 o . . .  

a . . .  al n-3 

- - 

For almost any choice of d 

:I 1 

dTHFn-lJ 

the matrix 

(4.17) 

(4.18) 
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- 
will have full rank (i.e., p($ = n-1). Then, since A is nonsingular, 
(4.18) represents (n-1) linear, independent equations in n unknowns, 

the elements of c. Therefore, (4.18) will have many solutions for c. 
One such solution, which minimizes the Euclidean norm of c, is 

-t --I- - 
c = M  A (b-a) (4.20) 

Thus, after finding a choice of d such that p(M) = n-1, an nx1 
matrix c can be found using (4.20) such that K = cdT will yield the 
desired characteristic polynomial. 

This completes the proof of Theroem 4.2 

Theorems 4.1 and 4.2 show that for a completely observable system 
with a cyclic F matrix the dynamics of the error in (4.4) can be made 
arbitrary if F is nonsingular and almost arbitrary if F is singular 

by an appropriate choice of the gain K. In particular K can be 
chosen such that the characteristic roots of (F-KHF) are all zero - 
this will cause the error to go to zero in at most n steps. The 
convergence of the constant gain observer does not depend on the 
accuracy of the initial statistics of x. 

N 

4.1.2 Gain Selection for Noisy Observations of Input/Output 

When the observations are corrupted by noise equations ( 4 . 3 )  become 

G(k+llk) 

G(k+llk+l) = G(k+llk) -1- K[z(k+l) - H S(k+llk)] 
= F G(k(k) + G w(k) 

(4.21) 

and (4.4) becomes 

N 

x(k+l (k+l) = (F-K?iF)g(kIk)-(G-KHG)p(k) - KV(k+l) (4.22) 
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In this case it will not be possible to drive the error to zero. 
gain K will be chosen to yield a sufficiently small trace of the 

steady state covariance matrix, however. 

The 

The characteristic polynomial of (F-KHF) can be written in factored 
form as 

X(F-KHF) = (S-dl)(s-d2) a (s-d,) . (4.23) 

Theorems 4.1 and 4.2 show that for a completely observable system with a 

cyclic F matrix the gain K can be chosen to yield any real set of 

with the restriction that d = 0 if F is singular. Suppose the 

are chosen real and distinct (with d = 0 for F singular) and an 
n di 9 

di n 

can be found and the matrix 
condition 

appropriate K is determined. Then the eigenvectors Pi of (F-KHJ?) 
A 

P = [p, p2 . . . pn] will satisfy the 

0 A .  (4.24) 

-1 If the transformation E(k) = P x(k) is made, equations (4.1), (4.21), 
and (4.22) become 

Assuming v(k) and p(k) are zero mean, mutually independent random 

variables with variances V, and U, respectively, the equation f o r  the 
covariance 5 (k+l lk3-1) E{r(k+l Ik+l)rT(k+llk+l)] is 

'F 
5 

'F 

T T T T  T -1' 
Z (k+llk+l) = AZ (klk)AT 4- P-l(G-KHG)U(G -G H K )P-lL + P-lKVK P 

5 5 (4.26) 
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B 

If the d are restricted such that Id. I < 1 for all i, a steady 
state covariance Z5(=) exists which is specified by 

i 1 

T T -1 T T T T  -1 T z p )  = A Z , ~ A ~  + P-'(G-KHG)U(G -G H K )P + P-~KVK P 
(4.27) 

Now, 
T T T T  -1 T 

tr[Zg(=)] = tr[AZ (=)AT] + tr[P-l(G-KHG)U(G -G H K )P 3 5 
T -lT + tr[P-lKVK P 1 

and letting d" = max {di} 
i 

so that 

T T -1 T 
1 + tr(P-'KVK P 

) (4.28) 
T T T T  -1 tr[P-l(G-KHG)U(G -G H K )P 

tr[Z5(=)l 2 
l-d" 

The covariances Z5 (k+l I k+l) and C (k+l I k3.1) = E{z(k+l I k+l)gT(k+l I k+l) 3 
are related by 

X 

Zx(k+llk+l) = PZ 5 (k+llk+l)PT (4.29) 

Taking the Hilbert norm of both sides of (4.29) gives 

and since IlAll = h (A) , the largest eigenvalue of A, if A is 
symetric and positive semidefinite equation (4.30) becomes 

max 

For a square matrix A of dimension n 
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n 

tr(A) = A. (A) 
1 

c 

(4.32) 
i= 1 

and if A is positive semidefinite Ai(A) 2 0 Vi so that 

(4.33) 

Using (4.28), (4.31), and (4,33) it is easily seen that 

Now, 

A [ Z X ( 4 l  * bX Vi 
if max 

th where G (a) is the i . diagonal element of Sx(=) and, as such, is 
the steady state variance of the error in estimating the ith element of 

the state vector. Therefore the criterion to be used for choosing the 

gain K will be minimization of the bound in (4.34). The procedure for 

xi i 

choosing 

1) 

2) 

3) 

4) 
5) 

IC is then 

Choose a set of di with adequate convergence properties, 
observing the constraint for singular F. 
Find a gain K yielding the corresponding characteristic 
equation using the results of Theorems 4.1 or 4.2. 
Obtain the matrix of eigenvectors, 

Compute the upper bound in (4.34) 
If this bound is satisfactorily small the gain K can be used. 
If the bound is too large, iteration can be performed either 
on steps 2)-5) or on 1)-5) until a satisfactory bound is 
obtained 

P. 

- NOTE: For a continuous system equations (4.22), (4.16) and (4.34) become 

N 

x ( t )  = (F-KH)Z(t)-(G-KHG)p(t) - Kv(t) (4.35) 

(4.36) -1 -1 c = M A (b-a) 
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n 
rn m 

2 trrP-'(G-KHG)U(G T -G T H T K T )P  -1' ]+tr(P-lKVK T P -1') 
r. [Zx(41 5 IIPII 

( 4  * 3 7 )  2 Id" I max 

where the di are chosen as negative real numbers (there is no restric- 

tion for F singular) and d* = max Edi]. The pi are eigenvectors of 
i 

(F-KH) for the continuous case. The procedure given above can then be 
used in conjunction with (4.35), ( 4 . 3 6 ) ,  and ( 4 . 3 7 )  to choose the gain 

K for a continuous observer. 

4 . 2  Open-Closed Loop Observer 

If the system is not known exactly and [$(k+l), ;(k+l) k(k+l)] 
is the model used for estimation at the k+lth time instant, equations 
(4.2) become 

$(k+llk) = $(k+l)g(klk) + g(k+l)w(k) 
G(k4-1 Ik+l) = g(k+l Ik) + K(k+l) [z(k+l) - C(k+l)?(k+l Jk) ] ( 4 . 3 8 )  

N 

and the error x(k+llk+l) is given by 

N 

x(k+l ]k+l) = [$(k+l) - K(k+l)fi(k+l);(k+l)];(klk)- [g(k+l) 

- K(k+l)~(k+l)6(k+l) ]p(k) - K(k+l)v(k+l) 
+ [?(k+l) - K(k+l)$(k+l)F(k+l) ]x(k) + [z(k+l) 
- K(k+l)$(k+l)E(k+l) ]u(k) - K(k+l)%(k+l)x(k+l) ( 4 . 3 9 )  

N 

where F(k+l) , 
respectively. 

reasonable cho 
A n 

ru 
G(k+l), and E(k+l) 
Lacking any information about these modeling errors a 
ce for K(k+l) is the constant gain that would be used 

if This is an open- 

closed loop observer. It is open loop in the sense that the gain at 

each instant is computed as though the model of the system would not 

change, but it is closed loop because the gain is recomputed at each 

instant to take account of changes in the model. 

(k+l) is the same as that at time k then K(k+l) = K(k). 

are the unknown errors in F, G, and H 

h 

(F(k4-1), G(k+l), H(k+l)) were the actual system. 

If the model at time 

Suppose the model is obtained from a consistent identifier. Then 

61  



lim [?(k), i(k), i(k)] = (F,G,H) 
k- 

lim [??(k), E(k), %(k) 1 = (O,O, 0) 
k- 

and in the limit (4.39) becomes 

N ik x(k+l Ik+l) = (F-K*,HF)g(k Ik)- (G-K*HG)p(k) - K v(k+l) (4.41) 

where K* is the gain that would be computed for (F,G,H) by the 
procedure in section 4.1.2. 

this open-closed loop observer in conjunction with the consistent 
identifier will satisfy (4.34). Note that using the consistent identifier 

the model does not have to be updated after each input/output measurement, 
but can be updated at any desired rate. Clearly, as the model converges 

to the true parameters the rate of updating can be decreased. Between 

time instants at which the model is recomputed, the gain of the estimator 
will remain constant. These features represent a great computational 
saving over schemes in which an approximate covariance matrix must be 

computed at each time instant. 

The steady state covariance obtained using 

In summary, the combination of a consistent identifier and an open- 
closed loop observer is recommended for solving the problem of parameter 

identification and state estimation because of 

1) consistent parameter identification, 
2 )  computational savings, 

3 )  bounding of the steady state covariance matrix. 

The state estimation will be asymptotically efficient in that a bound 
will exist for the maximum mean square estimation error, and the 

estimation will be asymptotically optimum when K* actually minimizes 

the trace of the steady state covariance matrix. 
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5. COMPUTATIONAL RESULTS 

To demonstrate the application of the estimators presented in this 

paper two simple examples are considered. 

only the problem of parameter identification and demonstrates the con- 
vergence rates of the three consistent parameter identifiers proposed in 
Chapter 3. The second example presents a specific case in which the 
open-closed loop observer of Chapter 4 yields better results than the 
extended Kalman filter of Farissn [ 4 ] .  

The first example involves 

5.1 Example 1 - Convergence Rates of Consistent Parameter Identifiers 
For comparison of the convergence rates of the consistent parameter 

identifiers of Chapter 3 with the convergence rate of an estimator which 

requires information about the initial state and the noise distribution 
the fourth order 

was considered. 

0 

F =  il 
discrete system presented in section 4.6 of Reference [27] 
The system is described by the matrices 

I 
0 

0 

a2 

0 

1 
0 

a 3 

1 

a4 rj G =  li; H = [l, 0 0 01 

1 

with al=-0.656, a2 = 0.784, a3 = -0.18, and a4 = 1.0. 

A s  pointed out in [27] the equivalent z-transfer function is 

3 

(z2-1.82+0.8)(z2 + 0.82 + 0.8) 

z 
G ( z )  = 

which, except for the numerator, could be considered as a hypothetical 

missile with the short period and first bending mode included. 
The problem is to identify the parameters a19 a*, a3, and a4. 

Since F is nonsingular each of the identification procedures of 

Chapter 3 can be applied. 

computer. 
Tables 5.1, 5.2, and 5,3 show the results of using the identifiers of 

Computations were performed using an IBM 360 
The initial state of the system was chosen as zero in all cases, 
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T a b l e  5 . 1  

Number of A * A 

Samples S/N R a t i o  $1 a2 3 a4 a 

1 0  

20 

4 0  

70 

100  

15 0 

200 

1 0  

20 

4 0  

70 

1 0 0  

15 0 

2 00 

10 

20 

4 0  

70 

100  

15 0 

200 

1 

5 -.61871 

- .62132 

-. 67475 

-.65777 

- .67117 
-.65796 

-. 65833 

2 - .54664 

-.55864 

-. 68416 

-. 67717 

-.68760 

-.65236 

-. 66162 

-.35733 

-.43247 

-. 68564 

-. 72002 

-.70507 

- .634 7 7 

-. 66632 

W -.65600 

.74622 

e 71972 

.76967 

.78078 

.79758 

76809 

e 77732 

.67158 

.61782 

.74600 

.74593 

,81193 

,73935 

.76870 

.46797 

.43566 

.70826 

.69083 

.82560 

.6884 0 

.75542 

78399 

-. 13465 

- e  14975 

-. 14042 

-. 17209 

-. 18008 

-. 17575 

-. 16900 

-. 06093 

-. 09792 

-. 10354 

-. 15180 

-. 17961 

-. 15039 

- .15 184 

.09088 

-. 00937 

- .0582 1 

-. 06974 

-. 17830 

-. 09717 

- .122 10 

-. 18000 

e 94386 

.98330 

.98806 

1.00620 

1.00598 

1.00331 

.99629 

.86558 

.96476 

.98236 

1.01122 

1.01341 

.99760 

.98993 

.73543 

.94280 

.98170 

.98933 

1.02343 

.98301 

.97&44 

1. 0000-1 
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Table 5.2 

h n 

3 “4 a 2 $ 
Number of h a 1 Samples S/N R a t i o  

1 0  

20  

40 

70 

100 

15 0 

2 00 

1 0  

20 

4 0  

70 

1 0 0  

15 0 

200 

10 

20 

4 0  

70 

1 0 0  

15 0 

2 00 

1 

-. 75381 98018 

- *  71687 .884 74 

- *  60332 e 69874 

- *  60682 .70240 

-.61077 ., 72178 

- .632 16 * 74779 

-.63889 e 76582 

- *  93273 77086 

-.09601 - 52864 

- .49969 * 5 0117 

-.50574 .51703 

- 5 14 07 -56738 

-.59100 e 68052 

r 

-.59062 v 
1 - .454 03 

.16403 

- 1.2 0981 

-. 24380 

- 24617 

- .43011 

-.43971 

03 -. 65625 

,67612 

11971 

- *  12263 

1.22876 

-. 12720 

.06768 

e 35667 

.3345 9 

.7854 0 

-.36200 

17404 

-. 12968 

13137 

-. 17683 

-. 1642 0 

-. 18761 

-59831 

1.29846 

.04100 

01068 

- *  11166 

12901 

-. 12112 

,62848 

-.68309 

1.07037 

.73067 

.23425 

,13178 

.22 726 

- 182 14 

1 e 06755 

.945 0 0  

.97300 

.97772 

1.01035 

.99449 

1.00712 

.425 05 

.22615 

e 88435 

.91039 

e 99726 

.98181 

97907 

.754 16 

1.54398 

-. 23569 

.54325 

e 86865 

.87719 

.8 16 12 

1.00084 

65 



9, 

* 
Table  5.3 

h 

Samples S/N R a t i o  3 $4 a 2 2 1 6 Number of 

1 0  

20 

4 0  

70 

1 0 0  

15 0 

200 

1 0  

20 

40 

70 

100  

15 0 

200 

1 0  

20 

40  

70 

100  

15 0 

200 

1 

5 -.69009 

-. 69853 

- .6  0864 

-.63072 

-.64618 

-.65741 

-. 65375 

2 -.82304 

-. 92197 

- .48903 

- .565 76 

m.58957 

- 62833 

-.62006 

1 -1.20331 

2.92358 

-. 29253 

-.47436 

-.49057 

- .54 094 

- .52 02 9 

co - .65 918 

.86722 

.8 92 74 

.64691 

a 66 182 

,72998 

.76717 

.76782 

1.082 18 

1.35181 

.36778 

.44 138 

,57003 

.6654 0 

.67268 

1.60579 

-5.22 095 

-. 11536 

. lo945 

.25693 

.35681 

-32918 

,78979 

-. 26875 

- e 24852 

-. 05688 

- ,046 08 

-. 135 18 

-. 17021 

-. 18405 

-. 37869 

-.49124 

.14923 

.14693 

-. 03333 

-. 11423 

-. 16364 

- .455 15 

1.62671 

.5 7866 

.47281 

,22080 

.08825 

e 01751 

- .185 06 

1.03464 

,99675 

.96387 

.96 086 

,99886 

1.00722 

1.01648 

1,05067 

.9995 0 

.91866 

.92 145 

.99798 

1.02252 

1.06056 

.95444 

1.65619 

.7735 9 

.83593 

.95620 

1.04121 

1.12331 

1.00146 
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sections 3.2.2.a, 3.2,2.b, and 3.2.2.~~ respectively, for various signal 
to noise ratios. In figures 5.1, 5.2, and 5.3 the normalized errors 

1 . 2  C( ai- ai) 

2 
Z a, 

- i - 

L i 

associated with these tables are plotted. In each figure it is apparent 
that the larger the signal to noise ratio the faster the convergence. 
The convergence rates obtained compare favorably with those in Reference 

~ 7 1 .  

5.2 Example 2 - Open-Closed Loop Observer 

To study the operation of the open-closed loop observer the simple 
scalar system 

x ( k f 1 )  = ax(k.) 

z (k)  = x(k)  + v(k) 

was considered. The statistics used in simulations on the IBM 360 

computer were f ; ( 0 3 0 )  = 10.0, :(o) = 1.2, ~ ~ ( 0 1 0 )  = .5, aa(0) = .I, 
E{v(i)} = 0, and av = 10.0 with the distributions of the initial 
state, of the parameter a, and of the noise being Gaussian (Gaussian 
statistics were chosen so that comparison with Farison's solution would 

be possible). Note that oa(0)o,(O 10) << $ ( O ) % ( O  I O )  so that Farison's 
result should be applicable-it is not a requirement of the open-closed 
loop observer. The gain of the open-closed loop observer was not chosen 
as zero when 

variance in the state estimate. 
closed loop observer was started after three observations so that initial 

noise in the observations wouldbe less important. In general the perform- 
ance of the observer of Chapter 4 and Farison's observer were comparable; 
however, in several instances use of Farison's filter results in 
erroneous estimates. In figures 5.4 and 5.5 results of a particular 
computer run are presented which shows the poorer performance of the 

Farison filter - the data is presented in table 5.4. 

8, < 1, but was chosen to yield a small steady state 
The parameter identifier of the open- 
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The failure of the Farison filter may be attributed to the high 

noise level and the fact that there is no driving noise to keep the 
filter gain from going to zero; but these conditions are not precluded 
in the general theory of the extended Kalman filter. Further study of 

the relative advantages of the extended filter and the open-closed 

loop observer seem desirable. 

7 1  



N N 
2 

a 

0 1.0388 1.2000 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

11 

12 

13 

14 

15 

16 

17 

18 

19  

20 

1.2000 

1.2000 

.2303 

.6 142 

,3911 

.3426 

.5 934 

,7063 

.7883 

.7962 

.7907 

.8149 

.8908 

.8927 

,8889 

,9117 

,9144 

.9338 

.9885 

.8988 

10.221 

10.624 

11.035 

11.463 

11.908 

12.369 

12.849 

13.347 

13.864 

14.402 

14.960 

15.540 

16.142 

16.768 

17.418 

18.093 

18.795 

19.523 

20.280 

21.066 

21.883 

10.000 10.000 

5.023 .186 

7.795 .099 

3.161 .022 

3.245 .005 

1.008 .001 

2.987 .ooo 
3.806 

4.638 

5.690 

6.032 

5.715 

5.850 

7 ,700 

8.869 

9.380 

10.272 

10.834 

11.818 

14.583 

13.715 

(1) 
6 = consistent estimate of a 

NC 

NF 

h a = estimate of a using the Farison filter 

i?(N/N)OCL = open-closed loop estimate of x(N) from N observations 

G(N/N)F = estimate of x ( N )  from N observations using the Farison 

filter 
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6 e CONCLUSIONS 

6.1 Summary 

A solution having desirable asymptotic behavior has been obtained 
for the problem of simultaneously estimating the parameters and states 

of linear systems. This solution has been obtained by separating the 
inherently nonlinear problem into two parts, a parameter estimator which 
does not depend on estimates of the state and a state estimator whose 

dynamics can be chosen to yield a satisfactory bound on the steady state 
mean square error when the system model is known exactly. 

By analyzing the structure of minimal systems it was possible to 

obtain a direct procedure for determining the minimal realizations of a 
linear system from noise free input/output observations. Three proce- 
dures, depending on different assumptions about the system structure and 

the noise, were then presented which yield consistent estimates of the 
parameters when the input/output observations are corrupted by noise. 
These estimators do not require state estimation or recursive calcula- 

tion of any parameter associated covariance matrix for implementation. 

The advantages of using constant gain observers are important-they 
do not require knowledge of the initial mean or variance of the state; 
they are less sensitive to modeling errors; and they give a significant 

computational saving. When estimating the states of a minimal system 
it is possible to choose the gain of the constant gain observer to give 
prescribed error dynamics. A procedure for choosing this constant gain 

has been established, which gives an upper bound for the steady state 
mean square estimation error if the system model is exact. 

When the gain of the observer is changed each time the model is 

changed the observer is termed open-closed loop. If the model is 
obtained from a consistent identifier the open-closed loop observer will 
be asymptotically efficient -the steady state bound computed for the 

mean square error will be correct. 

6.2 Suggestions for Future Research 

Some areas where further investigation might prove fruitful are 

the following: 
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z 
1) Determine the effect of the computer tolerance E on the 

identification procedure, 

possibility of obtaining the linearized model of a nonlinear 

system which is operating in a nearly linear region by 

appropriately choosing E .  

In particular investigate the 

2 )  Study the effects of various choices of the times ti to be 

3)  

used in the linear operator for continuous systems. 
Evaluate the performance of a controller which uses the output 
of the combined parameter and state estimator developed in 
this dissertation. 

4 )  Study the effects of changes in the rate at which the model 
is updated. 
Investigate the performance of the on-line identifiers when 

the plant dynamics are slowly varying. 
5)  
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