45 research outputs found

    Morphology and distribution of Navicula schmassmannii and its transfer to genus Humidophila

    Get PDF
    A small diatom with a peculiar shape is often identified as Navicula schmassmannii in samples collected from alpine lakes and the Arctic region. Due to its characteristic outline, it is relatively well-identifiable, but scanning electron microscope (SEM) confirmation is essential for proving species identity. This species likely has a palaeoecological indicator value of warming climate in mountain lakes, although it is generally a minor component of the diatom assemblages. Here we re-investigate its type material to clarify its identity and taxonomic position. We provide an emended description based on SEM observation, including new information on girdle morphology. Furthermore, another population of N. schmassmannii was studied. Detailed morphological observations using light microscope (LM) and SEM were done on specimens from a sediment core obtained from Lake Brazi in the Southern Carpathian Mountains. Late-glacial and early Holocene populations of the diatom resembling N. schmassmannii showed high morphological variability in comparison with the type material. On the basis of details of type material and the different morphotypes from Lake Brazi, the transfer of N. schmassmannii Hustedt to the genus Humidophila is proposed as H. schmassmannii (Hustedt) Buczkó et Wojtal

    Diatom-based evidence for abrupt climate changes during the Late Glacial in the Southern Carpathian Mountains

    Get PDF
    Abstract A high-resolution paleolimnological record from Lake Brazi (TDB-1; 45°23’47″N, 22°54’06″E, 1740 m a.s.l.), a small, glacial lake in the Retezat (South Carpathian Mountains, Romania) provides a sensitive record of the impacts of late glacial climatic change on siliceous algal assemblages. The sequence, ranging from 15,700 cal yr BP to 9500 cal yr BP, suggests that the most significant changes in diatom assemblages took place at 12,800 and 10,400 cal yr BP, when alkaliphilous fragilarioid taxa were replaced by acidophilous diatoms. Altogether eight zones were distinguished with sharp and rapid changes of diatom assemblages. The paper discusses the application of siliceous algae in multi-proxy paleolimnological analyses, demonstrates the advantages and disadvantages of this proxy and presents the story of floristic discovery of unique diatom assemblages, the closest recent analogs of which are found in the arctic region

    Radiocarbon chronology of glacial lake sediments in the Retezat Mts (South Carpathians, Romania): a window to Late Glacial and Holocene climatic and paleoenvironmental changes

    Get PDF
    Abstract the Retezat Mountains, this study discusses radiocarbon chronology and sediment accumulation rate changes in two sediment profiles in relation to lithostratigraphy, organic content, biogenic silica and major pollenstratigraphic changes. A total of 25 radiocarbon dates were obtained from sediments of two lakes, Lake Brazi (TDB-1; 1740 m a.s.l.) and Lake Gales (Gales-3; 1990 m a.s.l.). Age-depth modeling was performed on TDB-1 using calibrated age ranges from BCal and various curve-fitting methods in psimpoll. Our results suggest that sediment accumulation began between 15,124–15,755 cal yr BP in both lakes and was continuous throughout the Late Glacial and Holocene. We demonstrated that local ecosystem productivity showed delayed response to Late Glacial and Early Holocene climatic changes in the subalpine and alpine zones most likely attributable to the cooling effect of remnant glaciers and meltwater input. However, regional vegetation response was without time lag and indicated forestation and warming at 14,450 and 11,550 cal yr BP, and cooling at ca. 12,800 cal yr BP. In the Holocene one major shift was detected, starting around 6300 cal yr BP and culminating around 5200 cal yr BP. The various proxies suggested summer cooling, shorter duration of the winter ice-cover season and/or increasing size of the water body, probably in response to increasing available moisture

    Climate and land-use as the main drivers of recent environmental change in a mid-altitude mountain lake, Romanian Carpathians

    Get PDF
    Recent decades have been marked by unprecendented environmental changes which threaten the integrity of freshwater systems and their ecological value. Although most of these changes can be attributed to human activities, disentagling natural and anthropogenic drivers remains a challenge. In this study, surface sediments from Lake Ighiel, a mid-altitude site in the Carpathian Mts (Romania) were investigated following high-resolution sedimentological, geochemical, environmental magnetic and diatom analyses supported by historical cartographic and documentary evidence. Our results suggest that between 1920 and 1960 the study area experienced no significant anthropogenic impact. An excellent correspondence is observed between lake proxy responses (e.g., growth of submerged macrophytes, high detrital input, shifts in diatom assemblages) and parameters tracking natural hydroclimate variability (e.g., temperature, NAO). This highlights a dominant natural hydroclimatic control on the lacustrine system. From 1960 however, the depositional regime shifted markedly from laminated to homogenous clays; since then geochemical and magnetic data document a trend of significant (and on-going) subsurface erosion across the catchment. This is paralleled by a shift in lake ecosystem conditions denoting a strong response to an intensified anthropogenic impact, mainly through forestry. An increase in detrital input and marked changes in the diatom community are observed over the last three decades, alongside accelerated sedimentation rates following enhanced grazing and deforestation in the catchment. Recent shifts in diatom assemblages may also reflect forcing from atmospheric nitrogen (N) deposition, a key recent drive of diatom community turnover in mountain lakes. In general, enhanced human pressure alongside intermittent hydroclimate forcing drastically altered the landscape around Lake Ighiel and thus, the sedimentation regime and the ecosystem’s health. However, paleoenvironmental signals tracking natural hydroclimate variability are also clearly discernible in the proxy data. Our work illustrates the complex link between the drivers of catchment-scale impacts on one hand, and lake proxy responses on the other, highlighting the importance of an integrated historical and palaeolimnological approach to better assess lake system changes

    Limnological changes in South Carpathian glacier-formed lakes (Retezat Mountains, Romania) during the Late Glacial and the Holocene: A synthesis

    Get PDF
    Remains of aquatic biota preserved in mountain lake sediments provide an excellent tool to study lake ecosystem responses to past climate change. In the PROLONG project a multi-proxy study was performed on sediments of glacier-formed lakes from the Retezat Mountains, Southern Carpathians (Romania). The studied lakes (Lake Brazi and Gales) are situated on the northern slope of the mountain at different altitudes (1740 m and 1990 m a.s.l.). Our main objectives were 1) to describe the main limnological changes in these lakes during the last ca. 15,000 years and 2) to summarize the environmental history of the studied lakes based on taxonomical and functional patterns of the biological proxies. For this synthesis we used the results of diatom and chironomid analyses, and indirect biotic and abiotic parameters, including sediment organic matter (LOI) content, geochemical element concentrations (Al, Ca, S, Sr) and biogenic silica content. Using multivariate numerical approaches we analysed changes in the assemblage structure of siliceous algae and chironomids, compared temporal patterns among proxies, examined the relationship between potential driving factors, chironomid and diatom assemblage changes and identified paleolimnological phases of the lake successions. Changes in assemblage composition and aquatic ecosystem state apparently followed summer insolation, local climatic conditions and local productivity changes driven by these. Diatom and chironomid assemblages generally changed in a similar direction and at a similar time within a lake, but differed to some extent between Lake Brazi and Gales. At both lakes the strongest variations were observed in the Late Glacial and the first half of the Holocene. The strongest Holocene assemblage changes took place in the earliest Holocene in Lake Brazi, but extended into the mid-Holocene in Lake Gales, following long-term insolation changes and climatic changes. In addition, three common zone boundaries were identified: at ca. 14,200 and at ca. 6500 cal yr BP for every records and at ca. 3100 cal yr BP for diatom records in both of the lakes and for the chironomid record of Lake Brazi. This multi-proxy synthesis provides comprehensive data that increase our understanding of the past variability of lake ecosystem functioning and biodiversity in East-Central Europe. Keyword

    Effect of Temperature on the Size of Sedimentary Remains of Littoral Chydorids

    Get PDF
    The body size of aquatic invertebrates is, to a great extent, dependent on ambient temperature, but size distributions are also determined by other factors like food supply and predation. The effect of temperature on organisms is formulated in the temperature–size hypothesis, which predicts a smaller body size with increasing temperature. In this study, the effect of temperature on the subfossil remains of three littoral Cladocera (Alona affnis, A. quadrangularis, and Chydorus cf. sphaericus) was investigated. Exoskeletal remains of these species can be found in large numbers in lacustrine sediments and over a wide north–south range in Europe. The total length of both headshield and postabdomen for A. affinis and A. quadrangularis and carapace length for C. cf. sphaericus were measured to observe their response to changes in latitude and temperature. A different response to ambient temperature in the growth of body parts was observed. The size of the headshields of both Alona species and of the carapace of Chydorus was significantly larger in colder regions as opposed to warm ones. It turned out that the postabdomen was not a good predictor of ambient temperature. While the sizes of all remains increased with latitude, the sizes of the Alona remains was smaller in the mountain lakes of the Southern Carpathians than in other cold lakes, in this case in Finland, a fact indicative of the importance of other factors on size distribution. This study demonstrates that a morphological response to climate is present in littoral cladocerans, and, therefore, changes in the length of headshield and carapace may be used as a proxy for climate changes in paleolimnological records
    corecore