137 research outputs found

    Identifying the 'Achilles heel' of type 1 diabetes.

    Get PDF
    This is the author accepted manuscript. The final version is available from Oxford University Press via the DOI in this recordWhen Thetis dipped her son Achilles into the River Styx to make him immortal, she held him by the heel, which was not submerged, and thus created a weak spot that proved deadly for Achilles. Millennia later, Achilles heel is part of today's lexicon meaning an area of weakness or a vulnerable spot that causes failure. Also implied is that an Achilles heel is often missed, forgotten or under-appreciated until it is under attack, and then failure is fatal. Paris killed Achilles with an arrow 'guided by the Gods'. Understanding the pathogenesis of type 1 diabetes (T1D) in order to direct therapy for prevention and treatment is a major goal of research into T1D. At the International Congress of the Immunology of Diabetes Society, 2018, five leading experts were asked to present the case for a particular cell/element that could represent 'the Achilles heel of T1D'. These included neutrophils, B cells, CD8+ T cells, regulatory CD4+ T cells, and enteroviruses, all of which have been proposed to play an important role in the pathogenesis of type 1 diabetes. Did a single entity emerge as 'the' Achilles heel of T1D? The arguments are summarized here, to make this case

    Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity.

    Get PDF
    This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape

    Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal findings&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/significance&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi

    Trypanosoma cruzi CYP51 Inhibitor Derived from a Mycobacterium tuberculosis Screen Hit

    Get PDF
    Enzyme sterol 14α-demethylase (CYP51) is a well-established target for anti-fungal therapy and is a prospective target for Chagas' disease therapy. We previously identified a chemical scaffold capable of delivering a variety of chemical structures into the CYP51 active site. In this work the binding modes of several second generation compounds carrying this scaffold were determined in high-resolution co-crystal structures with CYP51 of Mycobacterium tuberculosis. Subsequent assays against CYP51 in Trypanosoma cruzi, the agent of Chagas' disease, demonstrated that two of the compounds bound tightly to the enzyme. Both were tested for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei. One of the compounds had potent, selective anti–T. cruzi activity in infected mouse macrophages. This compound is currently being evaluated in animal models of Chagas' disease. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability of a single amino acid residue at a critical position in the active site. Our work is aimed at rational design of potent and highly selective CYP51 inhibitors with potential to become therapeutic drugs. Drug selectivity to prevent host–pathogen cross-reactivity is pharmacologically important, because CYP51 is present in human host

    Structural Characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei Bound to the Antifungal Drugs Posaconazole and Fluconazole

    Get PDF
    Chagas Disease is caused by kinetoplastid protozoa Trypanosoma cruzi, whose sterols resemble those of fungi, in both composition and biosynthetic pathway. Azole inhibitors of sterol 14α-demethylase (CYP51), such as fluconazole, itraconazole, voriconazole, and posaconazole, successfully treat fungal infections in humans. Efforts have been made to translate anti-fungal azoles into a second-use application for Chagas Disease. Ravuconazole and posaconazole have been recently proposed as candidates for clinical trials with Chagas Disease patients. However, the widespread use of posaconazole for long-term treatment of chronic infections may be limited by hepatic and renal toxicity, a requirement for simultaneous intake of a fatty meal or nutritional supplement to enhance absorption, and cost. To aid our search for structurally and synthetically simple CYP51 inhibitors, we have determined the crystal structures of the CYP51 targets in T. cruzi and T. brucei, both bound to the anti-fungal drugs fluconazole or posaconazole. The structures provide a basis for a design of new drugs targeting Chagas Disease, and also make it possible to model the active site characteristics of the highly homologous Leishmania CYP51. This work provides a foundation for rational synthesis of new therapeutic agents targeting the three kinetoplastid parasites

    Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness

    Get PDF
    Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases
    corecore