4,437 research outputs found
Polytype control of spin qubits in silicon carbide
Crystal defects can confine isolated electronic spins and are promising
candidates for solid-state quantum information. Alongside research focusing on
nitrogen vacancy centers in diamond, an alternative strategy seeks to identify
new spin systems with an expanded set of technological capabilities, a
materials driven approach that could ultimately lead to "designer" spins with
tailored properties. Here, we show that the 4H, 6H and 3C polytypes of SiC all
host coherent and optically addressable defect spin states, including spins in
all three with room-temperature quantum coherence. The prevalence of this spin
coherence shows that crystal polymorphism can be a degree of freedom for
engineering spin qubits. Long spin coherence times allow us to use double
electron-electron resonance to measure magnetic dipole interactions between
spin ensembles in inequivalent lattice sites of the same crystal. Together with
the distinct optical and spin transition energies of such inequivalent spins,
these interactions provide a route to dipole-coupled networks of separately
addressable spins.Comment: 28 pages, 5 figures, and supplementary information and figure
The Principles of Social Order. Selected Essays of Lon L. Fuller, edited With an introduction by Kenneth I. Winston
The electron spins of semiconductor defects can have complex interactions with their host, particularly in polar materials like SiC where electrical and mechanical variables are intertwined. By combining pulsed spin resonance with ab initio simulations, we show that spin-spin interactions in 4H-SiC neutral divacancies give rise to spin states with a strong Stark effect, sub-10(-6) strain sensitivity, and highly spin-dependent photoluminescence with intensity contrasts of 15%-36%. These results establish SiC color centers as compelling systems for sensing nanoscale electric and strain fields
SetâBased Design and the Ship to Shore Connector
The Ship to Shore Connector (SSC), a replacement for the Landing Craft, Air Cushion (LCAC), is the first governmentâled design of a ship in over 15 years. This paper will discuss the changes that a governmentâled design presents to the design approach, including schedule, organization structure, and design methodology. While presenting challenges, a governmentâled design also afforded the opportunity to implement a new technique for assessing various systems and ship alternatives, setâbased design (SBD). The necessity for implementing SBD was the desire to design SSC from a blank sheet of paper and the need for a replacement craft in a short time frame. That is, the LCACs need to be replaced and consequently the preliminary design phase of the SSC program will only be 12 months. This paper will describe SBD and how it was applied to the SSC, the challenges that the program faced, and an assessment of the new methodology, along with recommendations that future design programs should consider when adopting this approach.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90054/1/j.1559-3584.2011.00332.x.pd
Distinctive expression patterns of 185/333 genes in the purple sea urchin, Strongylocentrotus purpuratus: an unexpectedly diverse family of transcripts in response to LPS, ÎČ-1,3-glucan, and dsRNA
BACKGROUND: A diverse set of transcripts called 185/333 is strongly expressed in sea urchins responding to immune challenge. Optimal alignments of full-length 185/333 cDNAs requires the insertion of large gaps that define 25 blocks of sequence called elements. The presence or absence of individual elements also defines a specific element pattern for each message. Individual sea urchins were challenged with pathogen associated molecular patterns (PAMPs) (lipopolysaccharide, ÎČ-1,3-glucan, or double stranded RNA), and changes in the 185/333 message repertoire were followed over time. RESULTS: Each animal expressed a diverse set of 185/333 messages prior to challenge and a 0.96 kb message was the predominant size after challenge. Sequence analysis of the cloned messages indicated that the major element pattern expressed in immunoquiescent sea urchins was either C1 or E2.1. In contrast, most animals responding to lipopolysaccharide, ÎČ-1,3-glucan or injury, predominantly expressed messages of the E2 pattern. In addition to the major patterns, extensive element pattern diversity was observed among the different animals before and after challenge. Nucleotide sequence diversity of the transcripts increased in response to ÎČ-1,3-glucan, double stranded RNA and injury, whereas diversity decreased in response to LPS. CONCLUSION: These results illustrate that sea urchins appear to be able to differentiate among different PAMPs by inducing the transcription of different sets of 185/333 genes. Furthermore, animals may share a suite of 185/333 genes that are expressed in response to common pathogens, while also maintaining a large number of unique genes within the population
Ethics roundtable debate: Withdrawal of tube feeding in a patient with persistent vegetative state where the patients wishes are unclear and there is family dissension
The decision to withdraw or withhold life supporting treatment in moribund patients is difficult under any circumstances. When the patient becomes incompetent to clarify their wishes regarding continued maintenance in long-term facilities, surrogates sometimes cannot agree, further clouding the issue. We examine a case where the State's interests come into play, forcing a controversial resolution
Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator
The breaking of time-reversal symmetry by ferromagnetism is predicted to
yield profound changes to the electronic surface states of a topological
insulator. Here, we report on a concerted set of structural, magnetic,
electrical and spectroscopic measurements of \MBS thin films wherein
photoemission and x-ray magnetic circular dichroism studies have recently shown
surface ferromagnetism in the temperature range 15 K K,
accompanied by a suppressed density of surface states at the Dirac point.
Secondary ion mass spectroscopy and scanning tunneling microscopy reveal an
inhomogeneous distribution of Mn atoms, with a tendency to segregate towards
the sample surface. Magnetometry and anisotropic magnetoresistance measurements
are insensitive to the high temperature ferromagnetism seen in surface studies,
revealing instead a low temperature ferromagnetic phase at K.
The absence of both a magneto-optical Kerr effect and anomalous Hall effect
suggests that this low temperature ferromagnetism is unlikely to be a
homogeneous bulk phase but likely originates in nanoscale near-surface regions
of the bulk where magnetic atoms segregate during sample growth. Although the
samples are not ideal, with both bulk and surface contributions to electron
transport, we measure a magnetoconductance whose behavior is qualitatively
consistent with predictions that the opening of a gap in the Dirac spectrum
drives quantum corrections to the conductance in topological insulators from
the symplectic to the orthogonal class.Comment: To appear in Phys. Rev.
Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von hippel-lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities
E3 ubiquitin ligases are attractive targets in the ubiquitin-proteasome system, however, the development of small-molecule ligands has been rewarded with limited success. The von Hippel-Lindau protein (pVHL) is the substrate recognition subunit of the VHL E3 ligase that targets HIF-1α for degradation. We recently reported inhibitors of the pVHL:HIF-1α interaction, however they exhibited moderate potency. Herein, we report the design and optimization, guided by X-ray crystal structures, of a ligand series with nanomolar binding affinities
- âŠ