1,604 research outputs found

    High field magneto-transport in high mobility gated InSb/InAlSb quantum well heterostructures

    Get PDF
    We present high field magneto-transport data from a range of 30nm wide InSb/InAlSb quantum wells. The low temperature carrier mobility of the samples studied ranged from 18.4 to 39.5 m2V-1s-1 with carrier densities between 1.5x1015 and 3.28x1015 m-2. Room temperature mobilities are reported in excess of 6 m2V-1s-1. It is found that the Landau level broadening decreases with carrier density and beating patterns are observed in the magnetoresistance with non-zero node amplitudes in samples with the narrowest broadening despite the presence of a large g-factor. The beating is attributed to Rashba splitting phenomenon and Rashba coupling parameters are extracted from the difference in spin populations for a range of samples and gate biases. The influence of Landau level broadening and spin-dependent scattering rates on the observation of beating in the Shubnikov-de Haas oscillations is investigated by simulations of the magnetoconductance. Data with non-zero beat node amplitudes are accompanied by asymmetric peaks in the Fourier transform, which are successfully reproduced by introducing a spin-dependent broadening in the simulations. It is found that the low-energy (majority) spin up state suffers more scattering than the high-energy (minority) spin down state and that the absence of beating patterns in the majority of (lower density) samples can be attributed to the same effect when the magnitude of the level broadening is large

    Shoulder posture and median nerve sliding

    Get PDF
    Background: Patients with upper limb pain often have a slumped sitting position and poorshoulder posture. Pain could be due to poor posture causing mechanical changes (stretch; localpressure) that in turn affect the function of major limb nerves (e.g. median nerve). This studyexamines (1) whether the individual components of slumped sitting (forward head position, trunkflexion and shoulder protraction) cause median nerve stretch and (2) whether shoulderprotraction restricts normal nerve movements.Methods: Longitudinal nerve movement was measured using frame-by-frame cross-correlationanalysis from high frequency ultrasound images during individual components of slumped sitting.The effects of protraction on nerve movement through the shoulder region were investigated byexamining nerve movement in the arm in response to contralateral neck side flexion.Results: Neither moving the head forward or trunk flexion caused significant movement of themedian nerve. In contrast, 4.3 mm of movement, adding 0.7% strain, occurred in the forearm duringshoulder protraction. A delay in movement at the start of protraction and straightening of thenerve trunk provided evidence of unloading with the shoulder flexed and elbow extended and thescapulothoracic joint in neutral. There was a 60% reduction in nerve movement in the arm duringcontralateral neck side flexion when the shoulder was protracted compared to scapulothoracicneutral.Conclusion: Slumped sitting is unlikely to increase nerve strain sufficient to cause changes tonerve function. However, shoulder protraction may place the median nerve at risk of injury, sincenerve movement is reduced through the shoulder region when the shoulder is protracted andother joints are moved. Both altered nerve dynamics in response to moving other joints and localchanges to blood supply may adversely affect nerve function and increase the risk of developingupper quadrant pain

    Tentative Evidence for Relativistic Electrons Generated by the Jet of the Young Sun-like Star DG Tau

    Full text link
    Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from AGN. We present data at 325 and 610 MHz taken with the GMRT of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass YSO at at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpret this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength (0.11 mG) and particle energy (4x10^40 erg), which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.Comment: 19 pages, 2 figures, accepted for publication in ApJ Letter

    On the ubiquity of molecular anions in the dense interstellar medium

    Get PDF
    Results are presented from a survey for molecular anions in seven nearby Galactic star-forming cores and molecular clouds. The hydrocarbon anion C6H- is detected in all seven target sources, including four sources where no anions have been previously detected: L1172, L1389, L1495B and TMC-1C. The C6H-/C6H column density ratio is greater than about 1.0% in every source, with a mean value of 3.0% (and standard deviation 0.92%). Combined with previous detections, our results show that anions are ubiquitous in dense clouds wherever C6H is present. The C6H-/C6H ratio is found to show a positive correlation with molecular hydrogen number density, and with the apparent age of the cloud. We also report the first detection of C4H- in TMC-1 (at 4.8-sigma confidence), and derive an anion-to-neutral ratio C4H-/C4H = (1.2 +- 0.4) x 10^-5 (= 0.0012 +- 0.0004%). Such a low value compared with C6H- highlights the need for a revised radiative electron attachment rate for C4H. Chemical model calculations show that the observed C4H- could be produced as a result of reactions of oxygen atoms with C5H- and C6H-

    Quantum phases of a qutrit

    Full text link
    We consider various approaches to treat the phases of a qutrit. Although it is possible to represent qutrits in a convenient geometrical manner by resorting to a generalization of the Poincare sphere, we argue that the appropriate way of dealing with this problem is through phase operators associated with the algebra su(3). The rather unusual properties of these phases are caused by the small dimension of the system and are explored in detail. We also examine the positive operator-valued measures that can describe the qutrit phase properties.Comment: 6 page

    Cold Water Vapor in the Barnard 5 Molecular Cloud

    Get PDF
    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold ((is) approximately 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 110-101) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal

    New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing

    Full text link
    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part which is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief,our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high efficiency conversion. With appropriate phase-matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase-matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states |0> and |2> is always very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure

    JHK Observations of Faint Standard Stars in the Mauna Kea Near-Infrared Photometric System

    Get PDF
    JHK photometry in the Mauna Kea Observatory (MKO) near-IR system is presented for 115 stars. Of these, 79 are UKIRT standards and 42 are LCO standards. The average brightness is 11.5 mag, with a range of 10 to 15. The average number of nights each star was observed is 4, and the average of the internal error of the final results is 0.011 mag. These JHK data agree with those reported by other groups to 0.02 mag. The measurements are used to derive transformations between the MKO JHK photometric system and the UKIRT, LCO and 2MASS systems. The 2MASS-MKO data scatter by 0.05 mag for redder stars: 2MASS-J includes H2O features in dwarfs and MKO-K includes CO features in giants. Transformations derived for stars whose spectra contain only weak features cannot give accurate transformations for objects with strong absorption features within a filter bandpasses. We find evidence of systematic effects at the 0.02 mag level in the photometry of stars with J<11 and H,K<10.5. This is due to an underestimate of the linearity correction for stars observed with the shortest exposure times; very accurate photometry of stars approaching the saturation limits of infrared detectors which are operated in double-read mode is difficult to obtain. Four stars in the sample, GSPC S705-D, FS 116 (B216-b7), FS 144 (Ser-EC84) and FS 32 (Feige 108), may be variable. 84 stars in the sample have 11< J< 15 and 10.5<H,K<15, are not suspected to be variable, and have magnitudes with an estimated error <0.027 mag; 79 of these have an error of <0.020 mag. These represent the first published high-accuracy JHK stellar photometry in the MKO photometric system; we recommend these objects be employed as primary standards for that system [abridged].Comment: Accepted for publication in MNRAS, 14 pages, 5 Figure

    Constituting monetary conservatives via the 'savings habit': New Labour and the British housing market bubble

    Get PDF
    The ongoing world credit crunch might well kill off the most recent bubble dynamics in the British housing market by driving prices systematically downwards from their 2007 peak. Nonetheless, the experience of that bubble still warrants analytical attention. The Labour Government might not have been responsible for consciously creating it, but it has certainly grasped the opportunities the bubble has provided in an attempt to enforce a process of agential change at the heart of the British economy. The key issue in this respect is the way in which the Government has challenged the legitimacy of passive welfare receipts in favour of establishing a welfare system based on incorporating the individual into an active asset-holding society. The housing market has taken on new political significance as a means for individuals first to acquire assets and then to accumulate wealth on the back of asset ownership. The ensuing integration of the housing market into an increasingly reconfigured welfare system has permeated into the politics of everyday life. It has been consistent with individuals remaking their political subjectivities in line with preferences for the type of conservative monetary policies that typically keep house price bubbles inflated

    The JCMT Spectral Legacy Survey: physical structure of the molecular envelope of the high-mass protostar AFGL2591

    Get PDF
    The understanding of the formation process of massive stars (>8 Msun) is limited, due to theoretical complications and observational challenges. We investigate the physical structure of the large-scale (~10^4-10^5 AU) molecular envelope of the high-mass protostar AFGL2591 using spectral imaging in the 330-373 GHz regime from the JCMT Spectral Legacy Survey. Out of ~160 spectral features, this paper uses the 35 that are spatially resolved. The observed spatial distributions of a selection of six species are compared with radiative transfer models based on a static spherically symmetric structure, a dynamic spherical structure, and a static flattened structure. The maps of CO and its isotopic variations exhibit elongated geometries on scales of ~100", and smaller scale substructure is found in maps of N2H+, o-H2CO, CS, SO2, CCH, and methanol lines. A velocity gradient is apparent in maps of all molecular lines presented here, except SO, SO2, and H2CO. We find two emission peaks in warm (Eup~200K) methanol separated by 12", indicative of a secondary heating source in the envelope. The spherical models are able to explain the distribution of emission for the optically thin H13CO+ and C34S, but not for the optically thick HCN, HCO+, and CS, nor for the optically thin C17O. The introduction of velocity structure mitigates the optical depth effects, but does not fully explain the observations, especially in the spectral dimension. A static flattened envelope viewed at a small inclination angle does slightly better. We conclude that a geometry of the envelope other than an isotropic static sphere is needed to circumvent line optical depth effects. We propose that this could be achieved in envelope models with an outflow cavity and/or inhomogeneous structure at scales smaller than ~10^4 AU. The picture of inhomogeneity is supported by observed substructure in at least six species.Comment: 17 pages; accepted for publication in A&
    corecore