158 research outputs found

    Examining Whether Semantic Cues Can Affect Felt Heaviness When Lifting Novel Objects

    Get PDF
    This is the final version. Available on open access from Ubiquity Press via the DOI in this recordData Accessibility Statement: Raw data, and the preregistered analysis plan, can be found at: https://osf.io/ug3hc/It is well established that manipulations of low-level stimulus properties unrelated to mass can impact perception of heaviness, the most famous example being the size-weight illusion whereby small objects feel heavier than equally-weighted larger objects. Interestingly, manipulations of high-level cues such as material have also induced weight illusions, highlighting that cognitive expectations alone are enough to create illusory weight differences. Less is known, however, about what type of cognitive expectations can influence perception of heaviness. As labels are often used to signify the heaviness of objects, this study examined whether semantic cues could induce a novel weight illusion. Participants lifted equally-sized and equally-weighted sets of objects labelled as 'light' and 'heavy' and reported their perceived heaviness both prior to and after lifting. Fingertip forces were also measured to understand how semantic cues may influence sensorimotor prediction. The labels clearly affected pre-lift-off expectations of heaviness. By contrast, we found no effect of these labels on the perceived heaviness of objects, nor on the forces used to grip and lift them on early trials. In other words, we find no evidence that semantic cues affect perception or action enough to induce a novel weight illusion. These findings suggest that the explicit expectations created by the labels did not dominate the implicit expectations created by the equal sizes of the objects, highlighting the segregated nature of cognitive expectations and their variable influences on perception and action

    Using Immersive Virtual Reality to Examine How Visual and Tactile Cues Drive the Material-Weight Illusion

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordAvailability of Data and Materials: All materials and data are available on the Open Science Framework (https://osf.io/7k548/).The material-weight illusion (MWI) demonstrates how our past experience with material and weight can create expectations that influence the perceived heaviness of an object. Here we used mixed-reality to place touch and vision in conflict, to investigate whether the modality through which materials are presented to a lifter could influence the top-down perceptual processes driving the MWI. University students lifted equally-weighted polystyrene, cork and granite cubes whilst viewing computer-generated images of the cubes in virtual reality (VR). This allowed the visual and tactile material cues to be altered, whilst all other object properties were kept constant. Representation of the objects' material in VR was manipulated to create four sensory conditions: visual-tactile matched, visual-tactile mismatched, visual differences only and tactile differences only. A robust MWI was induced across all sensory conditions, whereby the polystyrene object felt heavier than the granite object. The strength of the MWI differed across conditions, with tactile material cues having a stronger influence on perceived heaviness than visual material cues. We discuss how these results suggest a mechanism whereby multisensory integration directly impacts how top-down processes shape perception.Engineering and Physical Sciences Research Council (EPSRC

    SST dynamics at different scales: evaluating the oceanographic model resolution skill to represent SST processes in the Southern Ocean

    Get PDF
    In this study we demonstrate the many strengths of scale analysis: we use it to evaluate the Nucleus for European Modelling of the Ocean (NEMO) model skill in representing sea surface temperature (SST) in the Southern Ocean (SO) by comparing three model resolutions: 1/12Β°, 1/4Β° and 1Β°. We show that whilst 4‐5 times resolution scale is sufficient for each model resolution to reproduce the magnitude of satellite Earth Observation (EO) SST spatial variability to within Β±10%, the representation of ∼ 100 km SST variability patterns is substantially (e.g ∼50% at 750 km) improved by increasing model resolution from 1Β° to 1/12Β°. We also analysed the dominant scales of the SST model input drivers (short‐wave radiation, air‐sea heat fluxes, wind stress components, wind stress curl, bathymetry) variability with the purpose of determining the optimal SST model input driver resolution. The SST magnitude of variability is shown to scale with two power law regimes separated by a scaling break at ∼200 km scale. The analysis of the spatial and temporal scales of dominant SST driver impact helps to interpret this scaling break as a separation between two different dynamical regimes: the (relatively) fast SST dynamics below ∼200 km governed by eddies, fronts, Ekman upwelling and air‐sea heat exchange, whilst above ∼200 km the SST variability is dominated by long‐term (seasonal and supra‐seasonal) modes and the SST geography

    Explaining why simple liquids are quasi-universal

    Get PDF
    It has been known for a long time that many simple liquids have surprisingly similar structure as quantified, e.g., by the radial distribution function. A much more recent realization is that the dynamics are also very similar for a number of systems with quite different pair potentials. Systems with such non-trivial similarities are generally referred to as "quasi-universal". From the fact that the exponentially repulsive pair potential has strong virial potential-energy correlations in the low-temperature part of its thermodynamic phase diagram, we here show that a liquid is quasi-universal if its pair potential can be written approximately as a sum of exponential terms with numerically large prefactors. Based on evidence from the literature we moreover conjecture the converse, i.e., that quasi-universality only applies for systems with this property

    Fast splice site detection using information content and feature reduction

    Get PDF
    Background: Accurate identification of splice sites in DNA sequences plays a key role in the prediction of gene structure in eukaryotes. Already many computational methods have been proposed for the detection of splice sites and some of them showed high prediction accuracy. However, most of these methods are limited in terms of their long computation time when applied to whole genome sequence data. Results: In this paper we propose a hybrid algorithm which combines several effective and informative input features with the state of the art support vector machine (SVM). To obtain the input features we employ information content method based on Shannon\u27s information theory, Shapiro\u27s score scheme, and Markovian probabilities. We also use a feature elimination scheme to reduce the less informative features from the input data. Conclusion: In this study we propose a new feature based splice site detection method that shows improved acceptor and donor splice site detection in DNA sequences when the performance is compared with various state of the art and well known method

    The Influence of Social Comparison on Visual Representation of One's Face

    Get PDF
    Can the effects of social comparison extend beyond explicit evaluation to visual self-representationβ€”a perceptual stimulus that is objectively verifiable, unambiguous, and frequently updated? We morphed images of participants' faces with attractive and unattractive references. With access to a mirror, participants selected the morphed image they perceived as depicting their face. Participants who engaged in upward comparison with relevant attractive targets selected a less attractive morph compared to participants exposed to control images (Study 1). After downward comparison with relevant unattractive targets compared to control images, participants selected a more attractive morph (Study 2). Biased representations were not the products of cognitive accessibility of beauty constructs; comparisons did not influence representations of strangers' faces (Study 3). We discuss implications for vision, social comparison, and body image

    DUX4c Is Up-Regulated in FSHD. It Induces the MYF5 Protein and Human Myoblast Proliferation

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contractions of the D4Z4 repeat array in 4q35. We have previously identified a double homeobox gene (DUX4) within each D4Z4 unit that encodes a transcription factor expressed in FSHD but not control myoblasts. DUX4 and its target genes contribute to the global dysregulation of gene expression observed in FSHD. We have now characterized the homologous DUX4c gene mapped 42 kb centromeric of the D4Z4 repeat array. It encodes a 47-kDa protein with a double homeodomain identical to DUX4 but divergent in the carboxyl-terminal region. DUX4c was detected in primary myoblast extracts by Western blot with a specific antiserum, and was induced upon differentiation. The protein was increased about 2-fold in FSHD versus control myotubes but reached 2-10-fold induction in FSHD muscle biopsies. We have shown by Western blot and by a DNA-binding assay that DUX4c over-expression induced the MYF5 myogenic regulator and its DNA-binding activity. DUX4c might stabilize the MYF5 protein as we detected their interaction by co-immunoprecipitation. In keeping with the known role of Myf5 in myoblast accumulation during mouse muscle regeneration DUX4c over-expression activated proliferation of human primary myoblasts and inhibited their differentiation. Altogether, these results suggested that DUX4c could be involved in muscle regeneration and that changes in its expression could contribute to the FSHD pathology

    The importance of disease associations and concomitant therapy for the long-term management of psoriasis patients

    Get PDF
    It is well established that several inflammatory-type conditions, such as arthritis, diabetes, cardiovascular disease, and irritable bowel disease exist comorbidly and at an increased incidence in patients with psoriasis. Psoriasis and other associated diseases are thought to share common inflammatory pathways. Conditions such as these, with similar pathogenic mechanisms involving cytokine dysregulation, are referred to as immune-mediated inflammatory diseases (IMIDs). Considerable evidence for the genetic basis of cormobidities in psoriasis exists. The WHO has reported that the occurrence of chronic diseases, including IMIDs, are a rising global burden. In addition, conditions linked with psoriasis have been associated with increasing rates of considerable morbidity and mortality. The presence of comorbid conditions in psoriasis patients has important implications for clinical management. QoL, direct health care expenditures and pharmacokinetics of concomitant therapies are impacted by the presence of comorbid conditions. For example, methotrexate is contraindicated in hepatic impairment, while patients on ciclosporin should be monitored for kidney function. In addition, some agents, such as beta blockers, lithium, synthetic antimalarial drugs, NSAIDs and tetracycline antibiotics, have been implicated in the initiation or exacerbation of psoriasis. Consequently, collaboration between physicians in different specialties is essential to ensuring that psoriasis treatment benefits the patient without exacerbating associated conditions
    • …
    corecore