
Roskilde
University

Explaining why simple liquids are quasi-universal

Bacher, Andreas Kvist; Schrøder, Thomas; Dyre, J. C.

Published in:
Nature Communications

DOI:
10.1038/ncomms6424

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Bacher, A. K., Schrøder, T., & Dyre, J. C. (2014). Explaining why simple liquids are quasi-universal. Nature
Communications, 5, [5424]. https://doi.org/10.1038/ncomms6424

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain.
            • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@ruc.dk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 02. Dec. 2021

https://doi.org/10.1038/ncomms6424
https://doi.org/10.1038/ncomms6424


ARTICLE

Received 15 Jul 2014 | Accepted 30 Sep 2014 | Published 14 Nov 2014

Explaining why simple liquids are quasi-universal
Andreas K. Bacher1, Thomas B. Schrøder1 & Jeppe C. Dyre1

It has been known for a long time that many simple liquids have surprisingly similar structure

as quantified, for example, by the radial distribution function. A much more recent realization

is that the dynamics are also very similar for a number of systems with quite different

pair potentials. Systems with such non-trivial similarities are generally referred to as

‘quasi-universal’. From the fact that the exponentially repulsive pair potential has strong

virial potential-energy correlations in the low-temperature part of its thermodynamic phase

diagram, we here show that a liquid is quasi-universal if its pair potential can be written

approximately as a sum of exponential terms with numerically large prefactors. Based on

evidence from the literature we moreover conjecture the converse, that is, that quasi-uni-

versality only applies for systems with this property.
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A
cornerstone of liquid-state theory is the fact that the hard-
sphere (HS) model gives an excellent representation of
simple liquids. This was discussed in 1959 by Bernal1, and

the first liquid-state computer simulations at the same time by
Alder and Wainwright2 likewise studied the HS system. Following
this the HS model has been the fundament of liquid-state theory,
in particular since the 1970s when perturbation theory matured
into its present form3–5. The HS model is usually invoked to
explain the fact that many simple liquids have very similar
structure. This cannot explain, however, the more recent
observation of dynamic quasi-universality6–14 or why some
mathematically simple pair potentials violate quasi-
universality15–19.

An early hint of dynamic quasi-universality was provided by
Rosenfeld6 who showed that the diffusion constant is an almost
universal function of the excess entropy (the entropy minus that
of an ideal gas at the same temperature and density). This finding
did not attract a great deal of attention at the time, but the last
decade has seen renewed interest in excess-entropy scaling7,8 and,
more generally, in the striking similarities of the structure and
dynamics of many simple model liquids9–14. Thus Heyes and
Branka9,11,20–23 and others have documented that inverse power-
law (IPL) systems with different exponents have similar structure
and dynamics, Medina-Noyola and co-workers10,13,14 have
established that quasi-universality extends to the dynamics for
Newtonian as well as Brownian equations of motion, Scopigno
and co-workers21 have documented HS-like dynamics in liquid
gallium studied by quasi-elastic neutron scattering, and Liu and
co-workers12 have suggested a mapping of a soft-sphere system’s
dynamics to that of the HS system.

Further examples of similarities between apparently quite
different systems, identified throughout the years but still largely
unexplained, include: the Young–Andersen24 approximate scaling
principle according to which two systems that have the same
radial distribution function—even at different thermodynamic
state points—also have the same dynamics; the fact that different
systems have similar order-parameter maps in the sense of
Debenedetti and co-workers8,25, that is, when the relevant
orientational order parameter is plotted against the translational
one, almost identical curves result; the Lindemann and other
melting rules26,27; freezing rules like Andrade’s finding28 that
freezing initiates when the reduced viscosity upon cooling reaches
a certain value or the Hansen–Verlet29,30 rule that a liquid freezes
when the maximum structure factor reaches 2.85.

In the literature the term ‘quasi-universality’ refers to the
general observation that different simple systems have very
similar physics as regards structure and dynamics, but before
proceeding we need to define the term precisely. To do this, recall
first the definition of so-called reduced quantities. These are
quantities made dimensionless by dividing by the appropriate
combination of the following three units: the length unit is r� 1/3

where r is the number density, the energy unit is kBT where T is
the temperature, and the time unit is r� 1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
for

Newtonian dynamics where m is the particle mass (for Brownian
dynamics a different time unit is used31,32). Henceforth, reduced
quantities are denoted by a tilde, for instance the reduced pair
distance is defined by ~r � r1=3r.

By quasi-universality we shall mean the property of many
simple model liquids that knowledge of a single quantity
characterizing the structure or dynamics in reduced units is
enough to determine all other reduced-unit structural and
dynamic quantities to a good approximation. Note that a special
case of this is Rosenfeld’s observation that the excess entropy over
kB, a structural quantity, determines the reduced diffusion
constant. Likewise, the Young–Andersen33 approximate scaling
principle is a consequence of quasi-universality as defined here—

as these authors expressed it ‘... certain dynamical properties are
very insensitive to large changes in the interatomic potential that
leave the pair correlation function largely unchanged’.

It is straightforward to show that if quasi-universality applies,
the other points mentioned above also follow. The fundamental
questions are: which systems are quasi-universal? what causes
quasi-universality? The conventional explanation of quasi-
universality starts from the fact that the HS system provides an
excellent reference system for structure calculations6,10,12–14,34.
Approximate theories of liquid dynamic properties like
renormalized kinetic theory or mode-coupling theory in its
simplest version predict that the dynamics is uniquely determined
by the static structure factor, that is, that structure determines
dynamics. This reasoning led to the search for and discovery of
dynamic quasi-universality back in 2003 (refs 10,24).

The dynamics of the HS system consists of constant-velocity
free-particle motion interrupted by infinitely fast collisions, which
is quite different from the continuous motion described by
Newton’s laws for smooth potentials. Thus it is far from physically
obvious why the HS explanation of quasi-universal structure
extends to the dynamics. Moreover, while the HS explanation does
account for the finding that, for example, the Gaussian-core
model15,35,36 violates quasi-universality—a model without harsh
repulsions except at low temperatures—it cannot explain why
some strongly repulsive or hard-core pair-potential systems violate
quasi-universality. Examples of such systems are the Lennard–
Jones (LJ) Gaussian model17 and the Jagla model37. Finally, the
one-component plasma (OCP) model is well-known to be quasi-
universal6, but it is not intuitively clear when and why the gently
varying Coulomb force can be well-approximated by the harsh HS
interaction.

In this paper we do not use the HS reference system. In a
continuation of recent works38–40 we take a different approach to
quasi-universality by showing that any pair potential, which can
be approximated by a sum of exponential terms with numerically
large prefactors, is quasi-universal. This introduces the ‘EXP
quasi-universality class’ of pair potentials. Based on the available
evidence from the literature we moreover conjecture the converse,
that is, that all quasi-universal systems are in the EXP quasi-
universality class.

Results
The exponentially repulsive pair potential. We study below the
monatomic system described by the purely repulsive ‘EXP’ pair
potential

uEXPðr; e; sÞ ¼ e e� r=s: ð1Þ

This was discussed already by Born and Meyer41 and by
Buckingham42 in the context of a pair potential with an
exponentially repulsive term plus an r� 6 attractive term; note
also that the well-known Morse pair potential is a difference of two
exponentials43. The EXP pair potential may be justified physically
as reflecting the overlap of electron wavefunctions in conjunction
with the fact that bound-state wavefunctions decay exponentially
in space41. Although the EXP pair potential since 1932 has been
used occasionally in computer simulations and for interpretation of
experiments40,44–48, it never became a standard pair potential like
the LJ and Yukawa pair potentials29,49. Given the mathematical
simplicity of the EXP function this may seem surprising, but a
likely explanation is that no system in nature is believed to be well-
described by this purely repulsive pair potential. The present paper
suggests that it may nevertheless be a good idea to regard the EXP
pair potential as the fundamental building block of the physics of
simple liquids, much like the exponential function in the Fourier
and Laplace transform theories of pure mathematics.
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Our simulations focused on the low-temperature part of the
thermodynamic phase diagram, that is, where

kBT � e: ð2Þ
The potential energy as a function of all the particle coordinates
R�(r1,...,rN) is denoted by UEXP(R). Figure 1 shows scatter plots of
UEXP(R) for several configurations R plotted versus the potential
energies of the same configurations scaled uniformly to a different
density, that is, UEXP(R) plotted versus UEXP(lR) in which l3 is the
ratio of the two densities in question. The figure was constructed
by simulating five temperatures at the density rs3¼ 1.0� 10� 3

(lower line, different colours); at each of these five state points,
configurations were selected and scaled to four higher densities.
We see that there are very strong correlations between the potential
energies of scaled and unscaled configurations.

As shown elsewhere strong correlations between scaled and
unscaled potential energies are characteristic for systems that
have strong correlations between their virial and potential energy
thermal equilibrium fluctuations at the relevant state points31.
Systems with this property include not only ‘atomic’ pair-
potential systems like the IPL, Yukawa, and LJ systems and so on,
but also a number of rigid molecular model systems and even
the flexible LJ chain model50,51. Such systems were previously
referred to as ‘strongly correlating’, but are now called Roskilde-
simple or just Roskilde systems52–57, which avoids confusion with
strongly correlated quantum systems.

The strength of the virial potential-energy correlations of the
EXP system is reported in Fig. 2a for a large number of state
points. If virial and potential energy are denoted by W and U,
respectively, and sharp brackets denote canonical constant-
volume (NVT) averages, the colour coding of the figure gives
the Pearson correlation coefficient R defined58 by

R ¼ hDWDUiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðDUÞ2ihðDWÞ2i

q : ð3Þ

A pragmatic definition is that a given system is Roskilde simple at
the state point in question if R40.9 (ref. 58). This is the case for
the EXP system whenever kBT/eo0.1.

Figure 2b zooms in on the low-temperature part of the phase
diagram where the EXP system has particularly strong virial
potential-energy correlations. In both figures the line segments
have slope g, the slope of the so-called isomorph through the state
point in question that is calculated from the expression g¼
/DWDUS//(DU)2S (ref. 31). An isomorph is a curve in the
phase diagram along which structure and dynamics to a good
approximation are invariant in reduced units31,59. A system has
isomorphs if and only if the system has strong virial potential-
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Figure 1 | Scatter plots of potential energies per particle of the EXP

system. At the state point with density rs3¼ 1.0� 10� 3 and temperature

kBT/e¼ 1.0� 10�4 several configurations were selected from an

equilibrium simulation and scaled uniformly to four higher densities (the

light brown points); the same was done for four other temperatures at this

density. The figure shows that there are very strong correlations between

scaled and unscaled potential energies, with a scaling factor that only

depends on the two densities involved. The lines are best fits to the green

data points, that is, those generated from simulations at temperature

kBT/e¼ 1.4� 10�4. This figure validates the hidden-scale-invariance

property of the EXP pair-potential system as expressed below in

equation (4).
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Figure 2 | Thermodynamic phase diagram of the EXP system. Density

and temperature are both given in the unit system defined by pair-potential

parameters (equation (1)). (a) gives an overview of the phase diagram and

(b) zooms in on its low-temperature part; in both cases the colours indicate

the value of the virial potential-energy correlation coefficient R defined in

equation (3). The slope of each line segment is that of the isomorph

through the state point in question, the curve along which structure and

dynamics are (approximately) invariant in reduced units. The full curves

mark the melting isomorph; this curve’s width in a is approximately that of

the coexistence region. The dashed curves mark a few other isomorphs.
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energy correlations at the relevant state points31. The existence of
isomorphs implies that the phase diagram becomes effectively
one-dimensional for many physical properties; ref. 57 gives a
recent review of the isomorph theory with a focus on its
validation in computer simulations and experiments. The curves
in Fig. 2a are examples of isomorphs of which the full curve is the
melting isomorph.31 Isomorphs of the EXP system were studied
briefly in ref. 40.

Before proceeding we address the question why the EXP
pair potential has strong virial potential-energy correlations.
Our explanation refers to IPL pair potentials, which by
Euler’s theorem for homogeneous functions have 100% virial
potential-energy correlations (recall that the microscopic virial is
defined generally by W(R)¼ (� 1/3)R � rU(R) (ref. 5)). Figure 3
refers to the state point rs3¼ 1.0� 10� 3, kBT/e¼ 5.0� 10� 5.
The figure shows that the EXP pair potential (black curve) may be
fitted very well over the entire first coordination shell by an
extended IPL (‘eIPL’) function, which is defined as an IPL term
plus a linear term (the red-dashed line). As shown in ref. 58 the
linear term contributes little to neither the virial nor the
potential-energy constant-volume fluctuations because the sum
of nearest-neighbour distances is almost constant. This is because
if one particle is moved, some nearest-neighbour distances
decrease and others increase, resulting in almost no change in
the sum of the nearest-neighbour distances (this argument is
exact in one dimension). As a consequence, the WU fluctuations
are dominated by the IPL term and thus strongly correlating. This
explains why the EXP pair potential has very strong WU
correlations. To confirm the equivalence between the EXP pair
potential and the IPL pair potential 1:13~r� 8:41ð Þ, we performed a
simulation with the IPL pair potential at the same state point. As
predicted58,60 there is good agreement between the two systems’
structure (blue and green curves) and dynamics (not shown),
confirming that the linear term of the eIPL pair potential fitting
the EXP pair potential, 0:512~r� 0:738, is not important for the
physics.

Derivation of quasi-universality. We proceed to show that the
strong virial potential-energy correlation property of the EXP
system implies quasi-universality for a large class of monatomic

systems. As shown recently39, any Roskilde-simple system, that is,
with strong virial potential-energy correlations and isomorphs, is
characterized by ‘hidden-scale-invariance’ in the sense that two
functions of density exist, h(r) and g(r), such that the potential-
energy function U(R) can be expressed as follows

UðRÞ ffi hðrÞ~Fð~RÞþ gðrÞ: ð4Þ
Here ~Fð~RÞ is a dimensionless, state-point-independent function
of the reduced dimensionless configuration vector ~R � r1=3R. In
particular, equation (4) implies the strong correlations between
the potential energies of scaled and unscaled configurations
documented in Fig. 1: consider two configurations R1

and R2 at density r1 and r2, respectively, with the same

reduced coordinates, that is, obeying r1=3
1 R1 ¼ r1=3

2 R2. By
elimination of ~Fð~RÞ in equation (4) we get U(R2)D(h(r2)/
h(r1))U(R1)þ g(r2)� g(r1)h(r2)/h(r1). Thus any two
configurations with the same reduced coordinates have
potential energies that are approximately linear functions of
each other with constants that only depend on the two densities
in question, see Fig. 1.

According to equation (4) a change of density implies that
the potential-energy landscape to a good approximation under-
goes a linear, affine transformation. Moreover, equation (4)
implies invariant structure and dynamics in reduced units
along the curves defined by constant h(r)/kBT, the equation
identifying the isomorphs31,39,57: along any curve defined by
h(r)/kBT¼C the reduced force ~F � � ~rUðRÞ=kBT is given by
~F ¼ �C ~r~Fð~RÞ, which implies that ~F is a certain function of the
reduced coordinates, that is, ~F ¼ ~Fð~RÞ. Since Newton’s second
law in reduced coordinates is d2 ~R=d~t2 ¼ ~F (the reduced mass is
unity), it follows that the particles move in the same way at
different isomorphic state points—except for the trivial linear
uniform scalings of space and time involved in transforming back
to real units.

Since the EXP pair potential has strong virial potential-energy
correlations, equation (4) implies that functions hEXP(r), gEXP(r)
and ~FEXPð~RÞ exist such that

UEXPðRÞ ffi hEXPðrÞ~FEXPð~RÞþ gEXPðrÞ: ð5Þ
The functions hEXP(r) and gEXP(r) in equation (5) both have
dimension energy. They can therefore be written as hEXPðrÞ ¼
e~hEXPðrs3Þ and gEXPðrÞ ¼ e~gEXPðrs3Þ in which ~hEXP and ~gEXP are
dimensionless functions that only depend on the dimensionless
density rs3.

Consider now a pair potential u(r) that can be expressed as
follows

uðrÞ ¼
Z 1

0
f ðsÞe� r=sds: ð6Þ

The system’s potential energy is the sum of the individual pair-
potential contributions with the same weights as in equation (6).
Therefore, if U(R) is the potential energy and we define hðrÞ �R1

0 f ðsÞ~hEXPðrs3Þds and gðrÞ �
R1

0 f ðsÞ~gEXPðrs3Þds, it fol-
lows from equation (5) that

UðRÞ ffi hðrÞ~FEXPð~RÞþ gðrÞ: ð7Þ
Because the reduced-unit physics is encoded in the function
~FEXPð~RÞ via Newton’s equation d2 ~R=d~t2 ¼ �C ~r~FEXPð~RÞ
where C¼ h(r)/kBT identifes the isomorph through the state
point in question, equation (7) implies identical structure and
dynamics to a good approximation for systems obeying
equation (6). This argument would be exact if the EXP pair
potential had 100% virial potential-energy correlations. This is
not the case, though, and the approximation equation (7) is only
useful when it primarily involves EXP functions from the low-
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temperature part of the phase diagram where strong virial
potential-energy correlations and thus equation (4) apply.

We have shown that a pair potential u(r) is quasi-universal if it
can be written as a sum of low-temperature EXP pair potentials.
To translate this into an operational criterion, note the following.
If the integral in equation (6) is discretized into a finite sum and
expressed in terms of the reduced pair potential ~u � u=kBT
regarded as a function of the reduced pair distance ~r � r1=3r

� �
,

the condition for quasi-universality is that

~uð~rÞ ffi
X

j

Lje
� uj~r; jLj j � 1: ð8Þ

It is understood that the ‘wavevectors’ uj are not so closely spaced
that large positive and negative neighbouring terms may almost
cancel one another. Several points should be noted:
(1) Equation (8) is state-point dependent because the function
~uð~rÞ varies with state point; (2) a continuous integral of EXP
functions does not automatically obey equation (8)—it is
necessary that the integral can be approximated by a finite sum
of EXP terms, each with a numerically large prefactor; (3) a sum
or product of two pair potentials obeying equation (8) with all
Lj40 gives a function that also obeys this equation.

Important examples. Consider first the IPL pair potential
un(r)�e(r/s)� n. In terms of the reduced radius ~r, the reduced
IPL pair potential is given by ~unð~rÞ � unðrÞ=kBT ¼ Gn~r� n

in which Gn�(rs3)n/3e/kBT. The mathematical identityR1
0 xn� 1exp � xð Þdx ¼ n� 1ð Þ! implies that ~unð~rÞ ¼ ½Gn=

ðn� 1Þ ! 	
R1

0 un� 1expð� u~rÞdu. Discretizing the integral
leads to ~unð~rÞ ffi ½Gn=ðn� 1Þ ! 	Du

P1
j¼0ððjþ 1=2ÞDuÞn� 1

expð� ðjþ 1=2ÞDu~rÞ. Writing ((jþ 1/2)Du)n� 1¼ exp[(n� 1)
ln((jþ 1/2)Du)], by differentiation with respect to j it is easy to
see that the dominant contributions to the sum come from the
terms with ðn� 1Þ=ðjþ 1=2Þ ’ Du~r. Thus for typical nearest-
neighbour distances ~r ’ 1ð Þ the terms with (jþ 1/2)DuCn� 1
are the most important ones. For these values of j the prefactor of
the exponential in the above sum is roughly GnDu(n� 1)n� 1/
(n� 1)!. The largest realistic discretization step Du is in order of
unity, so we conclude that for values of n larger than three or four
equation (8) is obeyed unless Gn is very small, a condition that
applies for the state points that have typically been studied9,20–23.
The case of a Coulomb repulsive system (n¼ 1) is discussed in
the next section.

As a consequence of the above, at most state points the
potential energy of the IPL system, Un(R), can be written as

UnðRÞ ffi hnðrÞ~FEXPð~RÞþ gnðrÞ: ð9Þ
Since Un(R)prn/3 for the density variation induced by
a uniform scaling of a configuration R, that is, keeping ~R
constant, one has hn(r)prn/3 and gn(r)prn/3. This means
that two numbers an and bn exist such that
UnðRÞ ffi e½anðrs3Þn=3 ~FEXPð~RÞþ bnðrs3Þn=3	. For a general pair
potential of the form u(r)¼ e

P
nun(r/s)� n, by a linear combina-

tion of equation (9) we arrive at equation (7) in which h(r)¼
e
P

nunan(rs3)n/3 and g(r)¼ e
P

nvnbn(rs3)n/3.
A well-known case is the LJ pair potential uLJ(r)¼

4e[(r/s)� 12� (r/s)� 6]. Consider the LJ liquid state point given
by rs3¼ 1, kBT¼ 2e. In terms of the above-defined reduced IPL
functions, it is easy to see that this is of the form equation (8),
implying quasi-universality of the LJ liquid at this state point.

An application of the EXP theory of quasi-universality is the
intriguing ‘additivity of melting temperatures’61 according to
which if two systems have melting temperatures that as functions
of density are denoted by Tm,1(r) and Tm,2(r), the melting
temperature of the system with the sum potential energy is

Tm,1(r)þTm,2(r). This property follows from quasi-universality
because the dynamics of all three systems are controlled by the
same function ~FEXPð~RÞ. For the EXP system melting initiates
when this function’s average upon heating reaches a certain value,
and the same must apply for all quasi-universal systems. In
particular, since for an IPL system one has Tm(r)prn/3 (ref. 62),
the melting temperature of the LJ system varies with density
according to the expression Tm(r)¼Ar4�Br2 (refs 61,63).

Discussion
Denominating the systems that obey equation (8) collectively as
the EXP quasi-universality class, we have shown that all systems
in this class are quasi-universal in the sense of this paper: if a
single reduced-unit structural or dynamic quantity is known, all
other reduced-unit structural or dynamic quantities are known to
a good approximation. This is because these are all encoded in the
function ~FEXPð~RÞ, and any reduced-unit quantity characterizing
structure or dynamics identifies the constant C¼ h(r)/kBT
of the reduced-unit version of Newton’s second law
d2 ~R=d~t2 ¼ �C ~r~FEXPð~RÞ.

The obvious question is whether all quasi-universal systems are
in the EXP quasi-universality class. We cannot prove this, but
conjecture it is the case based on the available evidence in the
literature for the following systems:

The Jagla pair potential is a HS potential plus a finite-width
potential well defined by two terms that are linear in r (ref. 37).
This pair potential is not in the EXP quasi-universality class—it
cannot be approximated as a sum of exponentials because its
Laplace transform only has a pole at zero. Indeed, the Jagla pair
potential reproduces water’s anomalous density maximum and
has a liquid–liquid critical point19, properties which are both
inconsistent with quasi-universality.

The Gaussian core model (GCM) is a Gaussian centred at
r¼ 0. For this system there is a re-entrant body-centered cubic
phase above the triple point15 and the transport coefficients
have a non-monotonous density dependence at constant
temperature18. These observations both contradict quasi-
universality. Consistent with the above conjecture, a
representation of the form exp � r2=2s2ð Þ ¼

R1
0 f uð Þe� urdu

does not exist because the Laplace transform of a Gaussian has
no poles; thus the GCM system is not in the EXP quasi-
universality class. At low temperatures and low densities, the
GCM pair potential can be approximated well by an exponential,
however, and in this part of the phase diagram the GCM system is
indeed quasi-universal11,15.

The LJ Gaussian (LJG) model is a pair potential that is arrived
at by adding a negative, displaced Gaussian to the LJ pair
potential17. Like the GCM it cannot be written as a sum of
exponentials. The LJG system has thermodynamic and dynamic
anomalies16 and ‘a surprising variety of crystals’17, both of which
are observations that violate quasi-universality.

The OCP is the common name for the single-charge Coulomb
system. The Coulomb potential is too long ranged for a
thermodynamic limit to exist for the free energy per particle
unless a uniform charge-compensating background is intro-
duced5,49. Nevertheless, any finite OCP system is well-defined
and amenable to computer simulation—in fact the OCP system
was an important example in Rosenfeld’s original paper on
excess-entropy scaling6. The OCP system is the n¼ 1 case of the
above discussed IPL pair potential; it is quasi-universal in the
dense fluid case, that is, whenever G1441 (writing ~u1 � G1=~r).
Violations of quasi-universality are indeed known to gradually
appear when G1 goes below 50 (ref. 64).

The Yukawa pair potential is given by the expression u(r)¼
e(s/r)exp(� r/s). Since u rð Þ=e ¼

R1
0 exp � r uþ 1ð Þ=sð Þdu it is
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easy to see that this pair potential is in the EXP quasi-universality
class whenever kBTooe. This is consistent with known
properties65.

This paper has argued that one may replace the HS by the EXP
system as the generic simple pair-potential system from which
quasi-universality is derived. We do not suggest that the HS
system’s role in liquid-state physics is entirely undeserved,
however, because this model is still uniquely simple and
mathematically beautiful. Nevertheless, by using the EXP pair
potential as the fundamental building block, a number of
advantages are obtained. First of all, smoothness is ensured.
Second, if the conjecture that all quasi-universal functions are in
the EXP quasi-universality class is confirmed, we now have a
mathematically precise characterization of all quasi-universal pair
potentials (equation (8)). Third, the present explanation of quasi-
universality gives a natural explanation of dynamic quasi-
universality. Finally, the role of the HS pair potential in liquid-
state physics is clarified: quasi-universality is not caused by a
given system’s similarity to the HS system—rather, quasi-
universality implies similarity between the properties of many
systems and those of the HS system simply because the latter is in
the EXP quasi-universality class by being the n-N limit of an
IPL system. Note that while this paper focused on quasi-
universality for liquid models, the crystalline phases of these
models are likewise quasi-universal, for instance by having quasi-
universal radial distribution functions, phonon spectra and
vacancy jump dynamics66.

In continuing work it will be interesting to investigate the
consequences of the EXP approach for the fact that quasi-
universality appears to apply beyond the framework of thermal
equilibrium, for example, for the jamming transition in which the
HS model is presently used as the generic model67. It is an open
question whether replacing the HS model by the EXP model in
thermodynamic perturbation theory would have advantages5.
Another open question is to which extent mixtures are quasi-
universal68. Finally, recent results from the works of Truskett and
co-workers11 show that classical Rosenfeld excess-entropy scaling
may be modified into more general excess-entropy scalings, and it
would be interesting to investigate whether the present approach
can somehow be extended to account for this.

Method
Simulation system. A system of N¼ 1,000 particles interacting via the EXP pair
potential was simulated using standard Nose–Hoover NVT simulations with
a time step of 0.0025 and thermostat relaxation time of 0.2 (LJ units). A shifted-
forces cut-off at r¼ 2r� 1/3 was used for densities below 1.0� 10� 3, at larger
densities the cut-off was 4r� 1/3. At each state point the simulations involved
10,000,000 time steps after equilibration. For temperatures below 2.0� 10� 3, the
simulations were initiated from a state of 2,000 particles placed in a body-centred
cubic crystal structure. The melting isomorph was determined by the interface
pinning method69—the NPT simulations involved here were made using
LAMMPS70 (http://lammps.sandia.gov) with shifted-potential cut-offs ranging
from 2.5 r� 1/3 to 4.0 r� 1/3 for a system of 2,560 particles; the time step was 0.005
and the relaxation time was 0.4 for the thermostat and 0.8 for the barostat.
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