158 research outputs found

    Structuring the Jungle of Capabilities Fostering Digital Innovation

    Get PDF
    Driven by digitalization, the business environment is changing at an increasing pace. To be able to react to this, organizations must gain competitive advantages through Digital Innovation (DI). This special form of innovation requires a reorganization and further development of the resource and capability base of an organization. The existing literature shows a proliferation of definitions and a jungle of individual capabilities with regard to DI. Based on a structured literature review and a qualitative analysis of existing capabilities, the paper presents a DI Capability Model. By structuring layers, areas and associated capabilities, the model provides the first holistic view in the literature. It will serve as a basis for a targeted scientific discourse and a valuable orientation model for the development of a capability composition to foster DI in organizations.</p

    Barriers along the Digital Social Innovation Process: A Structured Literature Review

    Get PDF
    Digital social innovation (DSI) is an emerging phenomenon drawing knowledge from digital innovation (DI) and social innovation (SI), offering opportunities to contribute to societal change by leveraging the potential of digital technologies. Although DSI has evoked increasing interest, research and practice are far from realising its full potential as many barriers arise along the DSI process. Thus, holistic insights into DSI process and its barriers are essential. Therefore, we identify barriers along the DSI process through a structured literature review considering DI, SI, and DSI literature. As a result, we identified 28 barriers and classified them into the DSI barrier framework. The DSI barrier framework builds on the DI framework of Kohli and Melville (2019) and extends it by including the societal environment. We thus shed light on the DSI process and provide holistic insights into the barriers along the DSI process

    Any decline in prostateā€specific antigen levels identifies survivors scheduled for prostateā€specific membrane antigenā€directed radioligand therapy

    Get PDF
    Background Prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) is increasingly incorporated in the therapeutic algorithm of patients with metastatic castration-resistant prostate cancer (mCRPC). We aimed to elucidate the predictive performance of early biochemical response for overall survival (OS). Materials and Methods In this bicentric analysis, we included 184 mCRPC patients treated with 177^{177}Lu-PSMA RLT. Response to treatment was defined as decrease in prostate-specific antigen (PSA) levels 8 weeks after the first cycle of RLT (any decline or >50% according to Prostate Cancer Working Group 3). OS of responders and nonresponders was then compared using Kaplanā€“Meier curves and log-rank comparison. Results A total of 114/184 patients (62.0%) showed any PSA decline (PSA response >50%, 55/184 [29.9%]). For individuals exhibiting a PSA decline >50%, OS of 19 months was significantly longer relative to nonresponders (13 months; hazard ratio of death [HR]ā€‰=ā€‰0.64, 95% confidence interval [95% CI]ā€‰=ā€‰0.44ā€“0.93; pā€‰=ā€‰0.02). However, the difference was even more pronounced for any PSA decline, with an OS of 19 months in responders, but only 8 months in nonresponders (HRā€‰=ā€‰0.39, 95% CIā€‰=ā€‰0.25ā€“0.60; pā€‰<ā€‰0.001). Conclusions In mCRPC patients scheduled for RLT, early biochemical response was tightly linked to prolonged survival, irrespective of the magnitude of PSA decline. As such, even in patients with PSA decrease of less than 50%, RLT should be continued

    Success stories on organic seed production & breeding

    Get PDF
    This booklet is meant to inspire farmers, breeders and seed producers to devote resources to producing organic seed. It illustrates eight success stories from five European countries. Case studies cover the whole spectrum of farming from vegetable to fruit, cereal to potato and represent various stages of seed breeding, production and multiplication as well as a range of business set-ups: from individual farms to private seed companies, through non-profit organisations and cooperatives

    11C-Methionine-PET in multiple myeloma: a combined study from two different institutions

    Get PDF
    11^{11}C-methionine (MET) has recently emerged as an accurate marker of tumor burden and disease activity in patients with multiple myeloma (MM). This dual-center study aimed at further corroboration of the superiority of MET as positron emission tomography (PET) tracer for staging and re-staging MM, as compared to 18^{18}F-2`-deoxy-2`-fluoro-D-glucose (FDG). 78 patients with a history of solitary plasmacytoma (n=4), smoldering MM (SMM, n=5), and symptomatic MM (n=69) underwent both MET- and FDG-PET/computed tomography (CT) at the University Centers of WĆ¼rzburg, Germany and Navarra, Spain. Scans were compared on a patient and on a lesion basis. Inter-reader agreement was also evaluated. In 2 patients, tumor biopsies for verification of discordant imaging results were available. MET-PET detected focal lesions (FL) in 59/78 subjects (75.6%), whereas FDG-PET/CT showed lesions in only 47 patients (60.3%; p<0.01), accordingly disease activity would have been missed in 12 patients. Directed biopsies of discordant results confirmed MET-PET/CT results in both cases. MET depicted more FL in 44 patients (56.4%; p<0.01), whereas in two patients (2/78), FDG proved superior. In the remainder (41.0%, 32/78), both tracers yielded comparable results. Inter-reader agreement for MET was higher than for FDG (Īŗ = 0.82 vs Īŗ = 0.72). This study demonstrates higher sensitivity of MET in comparison to standard FDG to detect intra- and extramedullary MM including histologic evidence of FDG-negative, viable disease exclusively detectable by MET-PET/CT. MET holds the potential to replace FDG as functional imaging standard for staging and re-staging of MM

    Mucin Biopolymers As Broad-Spectrum Antiviral Agents

    Get PDF
    Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system.National Institutes of Health (U.S.) (grant P30-ES002109)National Institutes of Health (U.S.) (grant P50-GM068763)German Academic Exchange Service (Postdoctoral fellowship

    Targeting CXCR4 (CXC Chemokine Receptor Type 4) for Molecular Imaging of Aldosterone-Producing Adenoma

    Get PDF
    Primary aldosteronism is the most frequent cause of secondary hypertension and is associated with increased morbidity and mortality compared with hypertensive controls. The central diagnostic challenge is the differentiation between bilateral and unilateral disease, which determines treatment options. Bilateral adrenal venous sampling, currently recommended for differential diagnosis, is an invasive procedure with several drawbacks, making it desirable to develop novel noninvasive diagnostic tools. When investigating the expression pattern of chemokine receptors by quantitative real-time polymerase chain reaction and immunohistochemistry, we observed high expression of CXCR4 (CXC chemokine receptor type 4) in aldosterone-producing tissue in normal adrenals, adjacent adrenal cortex from adrenocortical adenomas, and in aldosterone-producing adenomas (APA), correlating strongly with the expression of CYP11B2 (aldosterone synthase). In contrast, CXCR4 was not detected in the majority of nonfunctioning adenomas that are frequently found coincidently. The specific CXCR4 ligand 68Ga-pentixafor has recently been established as radiotracer for molecular imaging of CXCR4 expression and showed strong and specific binding to cryosections of APAs in our study. We further investigated 9 patients with primary aldosteronism because of APA by 68Ga-pentixafor-positron emission tomography. The tracer uptake was significantly higher on the side of increased adrenocortical aldosterone secretion in patients with APAs compared with patients investigated by 68Ga-pentixafor-positron emission tomography for other causes. Molecular imaging of aldosterone-producing tissue by a CXCR4-specific ligand may, therefore, be a highly promising tool for noninvasive characterization of patients with APAs

    Electron population dynamics in resonant non-linear x-ray absorption in nickel at a free-electron laser

    Get PDF
    Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-rayā€“matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in theĀ L3-edge absorption of metallic nickel thin films, measured with fluences up to 60ā€‰J/cm2. We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale

    Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy

    Get PDF
    Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8ā€‰S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates
    • ā€¦
    corecore