5 research outputs found

    Main Cardiac Histopathologic Alterations in the Acute Phase of <i>Trypanosoma cruzi</i> Infection in a Murine Model

    No full text
    Symptoms in the acute phase of Chagas disease are usually mild and nonspecific. However, after several years, severe complications like dilated heart failure and even death may arise in the chronic phase. Due to the lack of specific symptoms in the acute phase, the aim of this work was to describe and analyze the cardiac histopathology during this phase in a CD1 mouse model by assessing parasitism, fibrotic damage, and the presence and composition of a cellular infiltrate, to determine its involvement in the pathogenesis of lesions in the cardiac tissue. Our results indicate that the acute phase lasts about 62 days post-infection (dpi). A significant increase in parasitemia was observed since 15 dpi, reaching a maximum at 33 dpi (4.1 × 106). The presence of amastigote nests was observed at 15–62 dpi, with a maximum count of 27 nests at 35 dpi. An infiltrate consisting primarily of macrophages and neutrophils was found in the cardiac tissue within the first 30 days, but the abundance of lymphocytes showed an 8 ≥ fold increase at 40–62 dpi. Unifocal interstitial fibrosis was identified after 9 dpi, which subsequently showed a 16 ≥ fold increase at 40–60 dpi, along with a 50% mortality rate in the model under study. The increased area of fibrotic lesions revealed progression in the extent of fibrosis, mainly at 50–62 dpi. The presence of perivasculitis and thrombus circulation disorders was seen in the last days (62 dpi); finally, cases of myocytolysis were observed at 50 and 62 dpi. These histopathological alterations, combined with collagen deposition, seem to lead to the development of interstitial fibrosis and damage to the cardiac tissue during the acute phase of infection. This study provides a more complete understanding of the patterns of histopathological abnormalities involved in the acute phase, which could help the development of new therapies to aid the preclinical tests of drugs for their application in Chagas disease

    Identification of O-Glcnacylated Proteins in Trypanosoma cruzi

    Get PDF
    International audienceOriginally an anthropozoonosis in the Americas, Chagas disease has spread from its previous borders through migration. It is caused by the protozoan Trypanosoma cruzi. Differences in disease severity have been attributed to a natural pleomorphism in T. cruzi. Several post-translational modifications (PTMs) have been studied in T. cruzi, but to date no work has focused on O-GlcNAcylation, a highly conserved monosaccharide-PTM of serine and threonine residues mainly found in nucleus, cytoplasm, and mitochondrion proteins. O-GlcNAcylation is thought to regulate protein function analogously to protein phosphorylation; indeed, crosstalk between both PTMs allows the cell to regulate its functions in response to nutrient levels and stress. Herein, we demonstrate O-GlcNAcylation in T. cruzi epimastigotes by three methods: by using specific antibodies against the modification in lysates and whole parasites, by click chemistry labeling, and by proteomics. In total, 1,271 putative O-GlcNAcylated proteins and six modification sequences were identified by mass spectrometry (data available via ProteomeXchange, ID PXD010285). Most of these proteins have structural and metabolic functions that are essential for parasite survival and evolution. Furthermore, O-GlcNAcylation pattern variations were observed by antibody detection under glucose deprivation and heat stress conditions, supporting their possible role in the adaptive response. Given the numerous biological processes in which O-GlcNAcylated proteins participate, its identification in T. cruzi proteins opens a new research field in the biology of Trypanosomatids, improve our understanding of infection processes and may allow us to identify new therapeutic targets

    A revision of thirteen species of Triatominae (Hemiptera: Reduviidae) vectors of Chagas disease in Mexico

    No full text
    Vectors of Trypanosoma cruzi, parasite responsible for Chagas disease, are divided in intradomestic, peridomestic and sylvatic. The intradomestic are Triatoma barberi and Triatoma dimidiata, two species that represent the highest health risk among the Mexican population. Triatoma dimidiata is a species found mainly inside human habitats, but in Yucatan, it corresponds to the peridomicile vectors. Also in the peridomicile most of Chagas disease vectors are found: Meccus bassolsae, M. longipennis, M. mazzottii, M pallidipennis, M. phyllosomus, M picturata, Triatoma gerstaeckeri, T mexicana, T rubida, Dipetalogaster máxima (the last two are in the process of becoming adapted to the domicile), Panstrongylus rufotuberculatus which occasionally enters the domicile in its adult stage, and Rhodnius prolixus, which is practically controlled in the country. Peridomestic vectors are of lower risk in the transmission dynamics, as compared to the intradomestic ones. For the control of the intradomestic vectors, health education programs, improvements of housing, and the use of pesticides are essential To control the peridomestic vectors, health education programs are required, as well as the use of mosquito nets on doors and windows and around beds, aside from cementing the stone wall fences

    A revision of thirteen species of Triatominae (Hemiptera: Reduviidae) vectors of Chagas disease in Mexico

    No full text
    Vectors of Trypanosoma cruzi, parasite responsible for Chagas disease, are divided in intradomestic, peridomestic and sylvatic. The intradomestic are Triatoma barberi and Triatoma dimidiata, two species that represent the highest health risk among the Mexican population. Triatoma dimidiata is a species found mainly inside human habitats, but in Yucatan, it corresponds to the peridomicile vectors. Also in the peridomicile most of Chagas disease vectors are found: Meccus bassolsae, M. longipennis, M. mazzottii, M pallidipennis, M. phyllosomus, M picturata, Triatoma gerstaeckeri, T mexicana, T rubida, Dipetalogaster máxima (the last two are in the process of becoming adapted to the domicile), Panstrongylus rufotuberculatus which occasionally enters the domicile in its adult stage, and Rhodnius prolixus, which is practically controlled in the country. Peridomestic vectors are of lower risk in the transmission dynamics, as compared to the intradomestic ones. For the control of the intradomestic vectors, health education programs, improvements of housing, and the use of pesticides are essential To control the peridomestic vectors, health education programs are required, as well as the use of mosquito nets on doors and windows and around beds, aside from cementing the stone wall fences.Los transmisores de Trypanosoma cruzi, flagelado causante de la enfermedad, se dividen en intradomiciliados, peridomiciliados y silvestres. Entre los intradomiciliados se encuentran, Triatoma barberi y Triatoma dimidiata, que son los que representan un mayor riesgo para la Salud Pública, en México. Aunque Triatoma dimidiata se encuentra principalmente dentro de la vivienda, en Yucatán tiene un comportamiento peridomiciliar, dentro de este grupo se encuentran la mayoría de los transmisores de la enfermedad de Chagas Meccus longipennis, M. mazzottii, M. pallidipennis, M. phyllosomus, M. picturatus, Triatoma gerstaeckeri, T. mexicana, T. rubida, Dipetalogaster máxima, Panstrongylus rufotuberculatus y Rhodnius prolixus. Los transmisores peridomiciliados son de menor riesgo en la dinámica de transmisión comparados con los intradomiciliados. Para el control de los transmisores intradomiciliados, se deben emplear programas de educación para la salud, mejoramiento de vivienda e insecticidas; mientras que para los vectores visitantes o peridomiciliados, son necesarios programas de educación para la salud, uso de mosquiteros, pabellones y cementación de las bardas de piedra
    corecore