8,383 research outputs found
Phase space properties of charged fields in theories of local observables
Within the setting of algebraic quantum field theory a relation between
phase-space properties of observables and charged fields is established. These
properties are expressed in terms of compactness and nuclearity conditions
which are the basis for the characterization of theories with physically
reasonable causal and thermal features. Relevant concepts and results of phase
space analysis in algebraic quantum field theory are reviewed and the
underlying ideas are outlined.Comment: 33 pages, no figures, AMSTEX, DESY 94-18
Nuclearity and Thermal States in Conformal Field Theory
We introduce a new type of spectral density condition, that we call
L^2-nuclearity. One formulation concerns lowest weight unitary representations
of SL(2,R) and turns out to be equivalent to the existence of characters. A
second formulation concerns inclusions of local observable von Neumann algebras
in Quantum Field Theory. We show the two formulations to agree in chiral
Conformal QFT and, starting from the trace class condition for the semigroup
generated by the conformal Hamiltonian L_0, we infer and naturally estimate the
Buchholz-Wichmann nuclearity condition and the (distal) split property. As a
corollary, if L_0 is log-elliptic, the Buchholz-Junglas set up is realized and
so there exists a beta-KMS state for the translation dynamics on the net of
C*-algebras for every inverse temperature beta>0. We include further
discussions on higher dimensional spacetimes. In particular, we verify that
L^2-nuclearity is satisfied for the scalar, massless Klein-Gordon field.Comment: 37 pages, minor correction
Stable quantum systems in anti-de Sitter space: Causality, independence and spectral properties
If a state is passive for uniformly accelerated observers in n-dimensional
anti-de Sitter space-time (i.e. cannot be used by them to operate a perpetuum
mobile), they will (a) register a universal value of the Unruh temperature, (b)
discover a PCT symmetry, and (c) find that observables in complementary
wedge-shaped regions necessarily commute with each other in this state. The
stability properties of such a passive state induce a "geodesic causal
structure" on AdS and concommitant locality relations. It is shown that
observables in these complementary wedge-shaped regions fulfill strong
additional independence conditions. In two-dimensional AdS these even suffice
to enable the derivation of a nontrivial, local, covariant net indexed by
bounded spacetime regions. All these results are model-independent and hold in
any theory which is compatible with a weak notion of space-time localization.
Examples are provided of models satisfying the hypotheses of these theorems.Comment: 27 pages, 1 figure: dedicated to Jacques Bros on the occasion of his
70th birthday. Revised version: typos corrected; as to appear in J. Math.
Phy
There are No Causality Problems for Fermi's Two Atom System
A repeatedly discussed gedanken experiment, proposed by Fermi to check
Einstein causality, is reconsidered. It is shown that, contrary to a recent
statement made by Hegerfeldt, there appears no causality paradoxon in a proper
theoretical description of the experiment.Comment: 6 pages, latex, DESY 94-02
Deformations of Fermionic Quantum Field Theories and Integrable Models
Considering the model of a scalar massive Fermion, it is shown that by means
of deformation techniques it is possible to obtain all integrable quantum field
theoretic models on two-dimensional Minkowski space which have factorizing
S-matrices corresponding to two-particle scattering functions S_2 satisfying
S_2(0) = -1. Among these models there is for example the Sinh-Gordon model. Our
analysis provides a complement to recent developments regarding deformations of
quantum field theories. The deformed model is investigated also in higher
dimensions. In particular, locality and covariance properties are analyzed.Comment: 20 page
Effect of turbulence on electron cyclotron current drive and heating in ITER
Non-linear local electromagnetic gyrokinetic turbulence simulations of the
ITER standard scenario H-mode are presented for the q=3/2 and q=2 surfaces. The
turbulent transport is examined in regions of velocity space characteristic of
electrons heated by electron cyclotron waves. Electromagnetic fluctuations and
sub-dominant micro-tearing modes are found to contribute significantly to the
transport of the accelerated electrons, even though they have only a small
impact on the transport of the bulk species. The particle diffusivity for
resonant passing electrons is found to be less than 0.15 m^2/s, and their heat
conductivity is found to be less than 2 m^2/s. Implications for the broadening
of the current drive and energy deposition in ITER are discussed.Comment: Letter, 5 pages, 5 figures, for submission to Nuclear Fusio
NCAA Division I-FBS Senior Woman Administrators
Dissertation supervisor: Dr. Stader.Includes vita.This study looks at the lack of female leadership in the National Collegiate Athletic Association (NCAA) Football Bowl Subdivision (FBS) in conjunction with the designation of the Senior Woman Administrator (SWA). Conducting qualitative research, the study aimed to understand the motivation of SWAs in career advancement. The study also aimed to understand the limitations of the SWA position on individual motivation. Does the designation of the SWA still hold a purpose in collegiate athletics? Or does it place a glass-ceiling style barrier on women in these jobs in ascending to the Athletic Director title?Includes bibliographical references
Magnetoconductance switching in an array of oval quantum dots
Employing oval shaped quantum billiards connected by quantum wires as the
building blocks of a linear quantum dot array, we calculate the ballistic
magnetoconductance in the linear response regime. Optimizing the geometry of
the billiards, we aim at a maximal finite- over zero-field ratio of the
magnetoconductance. This switching effect arises from a relative phase change
of scattering states in the oval quantum dot through the applied magnetic
field, which lifts a suppression of the transmission characteristic for a
certain range of geometry parameters. It is shown that a sustainable switching
ratio is reached for a very low field strength, which is multiplied by
connecting only a second dot to the single one. The impact of disorder is
addressed in the form of remote impurity scattering, which poses a temperature
dependent lower bound for the switching ratio, showing that this effect should
be readily observable in experiments.Comment: 11 pages, 8 figure
High Rate Discharge Studies of LI/SO2 Batteries
A battery composed of twelve lithium/sulfur dioxide D size cells in series is forced discharged at 21 amperes. This current is established by the proposed use of the battery and represented a discharge condition which might produce venting. Discharge of the battery into voltage reversal results not only in cells venting but also in the violent rupture of at least one cell
- …