11 research outputs found

    ViralORFeome: an integrated database to generate a versatile collection of viral ORFs

    Get PDF
    Large collections of protein-encoding open reading frames (ORFs) established in a versatile recombination-based cloning system have been instrumental to study protein functions in high-throughput assays. Such ‘ORFeome’ resources have been developed for several organisms but in virology, plasmid collections covering a significant fraction of the virosphere are still needed. In this perspective, we present ViralORFeome 1.0 (http://www.viralorfeome.com), an open-access database and management system that provides an integrated set of bioinformatic tools to clone viral ORFs in the Gateway® system. ViralORFeome provides a convenient interface to navigate through virus genome sequences, to design ORF-specific cloning primers, to validate the sequence of generated constructs and to browse established collections of virus ORFs. Most importantly, ViralORFeome has been designed to manage all possible variants or mutants of a given ORF so that the cloning procedure can be applied to any emerging virus strain. A subset of plasmid constructs generated with ViralORFeome platform has been tested with success for heterologous protein expression in different expression systems at proteome scale. ViralORFeome should provide our community with a framework to establish a large collection of virus ORF clones, an instrumental resource to determine functions, activities and binding partners of viral proteins

    Temporal Analysis of the Honey Bee Microbiome Reveals Four Novel Viruses and Seasonal Prevalence of Known Viruses, Nosema, and Crithidia

    Get PDF
    Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼1011 viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January

    Viral Diseases in Potato

    Get PDF
    Viruses are among the most significant biotic constraints in potato production. In the century since the discovery of the first potato viruses we have learned more and more about these pathogens, and this has accelerated over the last decade with the advent of high-throughput sequencing in the study of plant virology. Most reviews of potato viruses have focused on temperate potato production systems of Europe and North America. However, potato production is rapidly expanding in tropical and subtropical agro-ecologies of the world in Asia and Africa, which present a unique set of problems for the crop and affect the way viruses can be managed. In this chapter we review the latest discoveries in potato virology as well as the changes in virus populations that have occurred over the last 50 years, with a particular focus on countries in the (sub-)tropics. We also review the different management approaches including use of resistance, seed systems, and cultural approaches that have been employed in different countries and reflect on what can be learnt from past research on potato viruses, and what can be expected in the future facing climate change. © The Editor(s) (if applicable) and The Author(s) 2020.Peer reviewe
    corecore