121 research outputs found

    Parallax-Shifted Microlensing Events from Ground-Based Observations of the Galactic Bulge

    Get PDF
    The parallax effect in ground-based microlensing (ML) observations consists of a distortion to the standard ML light curve arising from the Earth's orbital motion. In most cases, the resolution in current ML surveys is not accurate enough to observe this effect, but parallax could conceivably be detected with frequent followup observations of ML events in progress. We calculate the expected fraction of events where parallax distortions will be detected by such observations, adopting Galactic models consistent with the observed ML timescale (t0t_0) distributions. We study the dependence of the rates for parallax-shifted events on the sampling frequency and on the photometric precision. For example, we find that for hourly observations with typical photometric errors of 0.01 mag, 6\% of events where the lens is in the bulge, and 31\% of events where the lens is in the disk, (or ≈10\approx 10\% of events overall) will give rise to a measurable parallax shift at the 95\% confidence level. These fractions may be increased by improved photometric accuracy and increased sampling frequency. Parallax measurements yield the reduced transverse speed, v~\tilde{v}, which gives both the relative transverse speed and lens mass as functions of distance. We give examples of the accuracies with which v~\tilde{v} may be measured in typical parallax events. Using only the 3 standard ML parameters to fit ML light curves which may be shape-distorted by parallax or blending, can result in incorrect inferred values for these quantities. We find that the inferred timescales from such fits tend to shift the event duration distribution by ≈10\approx 10\% towards shorter t0t_0 for events with disk lenses, but do not affect bulge lenses. In both cases, the impact-parameter distribution is depressed slightly at the low and high ends.Comment: 25 pages, 7 Postscript figure

    Vortices in vibrated granular rods

    Full text link
    We report the experimental observation of novel vortex patterns in vertically vibrated granular rods. Above a critical packing fraction, moving ordered domains of nearly vertical rods spontaneously form and coexist with horizontal rods. The domains of vertical rods coarsen in time to form large vortices. We investigate the conditions under which the vortices occur by varying the number of rods, vibration amplitude and frequency. The size of the vortices increases with the number of rods. We characterize the growth of the ordered domains by measuring the area fraction of the ordered regions as a function of time. A {\em void filling} model is presented to describe the nucleation and growth of the vertical domains. We track the ends of the vertical rods and obtain the velocity fields of the vortices. The rotation speed of the rods is observed to depend on the vibration velocity of the container and on the packing. To investigate the impact of the direction of driving on the observed phenomena, we performed experiments with the container vibrated horizontally. Although vertical domains form, vortices are not observed. We therefore argue that the motion is generated due to the interaction of the inclination of the rods with the bottom of a vertically vibrated container. We also perform simple experiments with a single row of rods in an annulus. These experiments directly demonstrate that the rod motion is generated when the rods are inclined from the vertical, and is always in the direction of the inclination.Comment: 6 pages, 10 figure, 2 movies at http://physics.clarku.edu/vortex uses revtex

    Cosmological Studies with Radio Galaxies and Supernovae

    Get PDF
    Physical sizes of extended radio galaxies can be employed as a cosmological "standard ruler", using a previously developed method. Eleven new radio galaxies are added to our previous sample of nineteen sources, forming a sample of thirty objects with redshifts between 0 and 1.8. This sample of radio galaxies are used to obtain the best fit cosmological parameters in a quintessence model in a spatially flat universe, a cosmological constant model that allows for non-zero space curvature, and a rolling scalar field model in a spatially flat universe. Results obtained with radio galaxies are compared with those obtained with different supernova samples, and with combined radio galaxy and supernova samples. Results obtained with different samples are consistent, suggesting that neither method is seriously affected by systematic errors. Best fit radio galaxy and supernovae model parameters determined in the different cosmological models are nearly identical, and are used to determine dimensionless coordinate distances to supernovae and radio galaxies, and distance moduli to the radio galaxies. The distance moduli to the radio galaxies can be combined with supernovae samples to increase the number of sources, particularly high-redshift sources, in the samples. The constraints obtained here with the combined radio galaxy plus supernovae data set in the rolling scalar field model are quite strong. The best fit parameter values suggest a value of omega is less than about 0.35, and the model parameter alpha is close to zero; that is, a cosmological constant provides a good description of the data. We also obtain new constraints on the physics of engines that power the large-scale radio emission.Comment: 32 pages. Accepted for publication in the Astrophysical Journa

    An Efficient Search for Gravitationally-Lensed Radio Lobes

    Get PDF
    We performed an automated comparison of the FIRST radio survey with the APM optical catalog to find radio lobes with optical counterparts. Based on an initial survey covering ~3000 square degrees, we selected a sample of 33 lens candidates for VLA confirmation. VLA and optical observations of these candidates yielded two lens systems, one a new discovery (J0816+5003), and one of which was previously known (J1549+3047). Two other candidates have radio lobes with galaxies superposed, but lack evidence of multiple imaging. One of our targets (J0958+2947) is a projected close pair of quasars (8'' separation at redshifts 2.064 and 2.744). Our search method is highly efficient, with >5% of our observing targets being lensed, compared to the usual success rate of <1%. Using the whole FIRST survey, we expect to find 5--10 lenses in short order using this approach, and the sample could increase to hundreds of lensed lobes in the Northern sky, using deeper optical surveys and planned upgrades to the VLA. Such a sample would be a powerful probe of galaxy structure and evolution.Comment: Submitted to ApJ, 2000.07.28, revised 2000.09.12. Minor revisions and new observations of best example. Eleven eps figures. Uses AASTeX/LaTeX, psfig2.te

    Minimal Angular Size of Distant Sources in Open, Λ\LambdaCDM, and Scalar Field Cosmologies

    Full text link
    We propose a simple method for determining the redshift zmz_{m} at which the angular size of an extragalactic source with fixed proper diameter takes its minimal value. A closed analytical expression, which is quite convenient for numerical evaluation is derived. The method is exemplified with the following FRW type expanding universes: the open matter dominated models (ΩΛ=0\Omega_{\Lambda}= 0), a critical density model with cosmological constant (ΩΛ≠0\Omega_{\Lambda} \neq 0), and the class of scalar field cosmologies proposed by Ratra and Peebles. The influence of systematic evolutionary effects is briefly discussed.Comment: 8 pages, 1 postscript figures, uses revtex macro

    The Millennium Galaxy Catalogue: the space density and surface brightness distribution(s) of galaxies

    Full text link
    We recover the joint and individual space density and surface brightness distribution(s) of galaxies from the Millennium Galaxy Catalogue. The MGC is a local survey spanning 30.9 sq deg and probing approximately one--two mag/sq arcsec deeper than either the Two-Degree Field Galaxy Redshift Survey (2dFGRS) or the Sloan Digital Sky Survey (SDSS). The MGC contains 10,095 galaxies to B_mgc < 20 mag with 96 per cent spectroscopic completeness. We implement a joint luminosity-surface brightness step-wise maximum likelihood method to recover the bivariate brightness distribution (BBD) inclusive of most selection effects. Integrating the BBD over surface brightness we recover the following Schechter function parameters: phi* = (0.0177 +/- 0.0015) h^3 Mpc^{-3}, M_{B}* - 5 log h = (-19.60 +/- 0.04) mag and alpha =-1.13 +/- 0.02. Compared to the 2dFGRS (Norberg et al 2002) we find a consistent M* value but a slightly flatter faint-end slope and a higher normalisation, resulting in a final luminosity density j_{b_J} = (1.99 +/- 0.17) x 10^8 h L_{odot} Mpc^{-3}. The MGC surface brightness distribution is a well bounded Gaussian at the M* point with phi* = (3.5 +/- 0.1) x 10^{-2} h^3 Mpc^{-3}, mu^{e*} = (21.90 +/- 0.01) mag/sq arcsec and sigma_{ln R_e} = 0.35 +/- 0.01. The characteristic surface brightness for luminous systems is invariant to M_{B} - 5 log h ~ -19 mag faintwards of which it moves to lower surface brightness. Higher resolution (FWHM 26 mag/sq arcsec in the B-band) observations of the local universe are now essential to probe to lower luminosity and lower surface brightness levels. [abridged]Comment: Accepted for publication in MNRAS, 26 pages with 21 figures (some degraded). A full pdf version, along with MGC data release, is available from the MGC website at, http://www.eso.org/~jliske/mg

    Simulating the Formation of the Local Galaxy Population

    Get PDF
    We simulate the formation and evolution of the local galaxy population starting from initial conditions with a smoothed linear density field which matches that derived from the IRAS 1.2 Jy galaxy survey. Our simulations track the formation and evolution of all dark matter haloes more massive than 10e+11 solar masses out to a distance of 8000 km/s from the Milky Way. We implement prescriptions similar to those of Kauffmann et al. (1999) to follow the assembly and evolution of the galaxies within these haloes. We focus on two variants of the CDM cosmology: an LCDM and a tCDM model. Galaxy formation in each is adjusted to reproduce the I-band Tully-Fisher relation of Giovanelli et al. (1997). We compare the present-day luminosity functions, colours, morphology and spatial distribution of our simulated galaxies with those of the real local population, in particular with the Updated Zwicky Catalog, with the IRAS PSCz redshift survey, and with individual local clusters such as Coma, Virgo and Perseus. We also use the simulations to study the clustering bias between the dark matter and galaxies of differing type. Although some significant discrepancies remain, our simulations recover the observed intrinsic properties and the observed spatial distribution of local galaxies reasonably well. They can thus be used to calibrate methods which use the observed local galaxy population to estimate the cosmic density parameter or to draw conclusions about the mechanisms of galaxy formation. To facilitate such work, we publically release our z=0 galaxy catalogues, together with the underlying mass distribution.Comment: 25 pages, 20 figures, submitted to MNRAS. High resolution copies of figures 1 and 3, halo and galaxy catalogues can be found at http://www.mpa-garching.mpg.de/NumCos/CR/index.htm

    Some Observational Consequences of Brane World Cosmologies

    Get PDF
    The presence of dark energy in the Universe is inferred directly and indirectly from a large body of observational evidence. The simplest and most theoretically appealing possibility is the vacuum energy density (cosmological constant). However, although in agreement with current observations, such a possibility exacerbates the well known cosmological constant problem, requiring a natural explanation for its small, but nonzero, value. In this paper we focus our attention on another dark energy candidate, one arising from gravitational \emph{leakage} into extra dimensions. We investigate observational constraints from current measurements of angular size of high-zz compact radio-sources on accelerated models based on this large scale modification of gravity. The predicted age of the Universe in the context of these models is briefly discussed. We argue that future observations will enable a more accurate test of these cosmologies and, possibly, show that such models constitute a viable possibility for the dark energy problem.Comment: 6 pages, 4 figures, to appear in Phys. Rev. D (minor revisions

    Dynamical properties of a large young disk galaxy at z=2.03

    Full text link
    Context. The study of high redshift Tully-Fisher relations (TFRs) is limited by the use of long slit spectrographs, rest frame B band and star formation selected galaxies. Aims. We try to circumvent these issues by using integral field spectroscopy (SINFONI), by studying the rest frame K band and stellar mass TFR, and by selecting targets without a bias to strongly star forming galaxies. In this paper, we demonstrate our methods on our best case. This galaxy, F257, at z=2.03, was selecte from a sample of candidate high redshift large disk galaxies in the Hubble Deep Field South that were selected with photometric and morphological criteria. Methods. We used SINFONI at the VLT to obtain an integral field spectrum of the Halpha line and hence a velocity field and rotation curve. We also use UBVIJHK+IRAC band photometry to determine a stellar photometric mass. Results. We find that F257 is indistinguishable from local late type galaxies in many respects: it has a regular velocity field, increasing velocity disperion towards its center, its rotation curve flattens at 1-2 disk scale lengths, it has the same specific angular momentum as local disks, its properties are consistent with the local K band TFR. Although mainly rotationally supported, its gas component is dynamically heated with respect to local galaxies (V/sigma_z ~ 4) and it is offset from the local stellar mass TFR at the 2sigma level. But, this offset depends on the SED modeling parameters. In particular, for a 2-component star formation history (SFH), F257 is in agreement with the local stellar mass TFR. F257 is then a nearly (~75%) maximum disk. The dynamical properties of F257 are more like those of local galaxies than those of any other galaxy at similar redshift observed to date. However, the gas-to-stellar mass ratio is unusally large: 2.5.Comment: Accepted for publication in A&A, 15 pages, 14 figure

    The effects of a three-week use of lumbosacral orthoses on trunk muscle activity and on the muscular response to trunk perturbations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effects of lumbosacral orthoses (LSOs) on neuromuscular control of the trunk are not known. There is a concern that wearing LSOs for a long period may adversely alter muscle control, making individuals more susceptible to injury if they discontinue wearing the LSOs. The purpose of this study was to document neuromuscular changes in healthy subjects during a 3-week period while they regularly wore a LSO.</p> <p>Methods</p> <p>Fourteen subjects wore LSOs 3 hrs a day for 3 weeks. Trunk muscle activity prior to and following a quick force release (trunk perturbation) was measured with EMG in 3 sessions on days 0, 7, and 21. A longitudinal, repeated-measures, factorial design was used. Muscle reflex response to trunk perturbations, spine compression force, as well as effective trunk stiffness and damping were dependent variables. The LSO, direction of perturbation, and testing session were the independent variables.</p> <p>Results</p> <p>The LSO significantly (<it>P </it>< 0.001) increased the effective trunk stiffness by 160 Nm/rad (27%) across all directions and testing sessions. The number of antagonist muscles that responded with an onset activity was significantly reduced after 7 days of wearing the LSO, but this difference disappeared on day 21 and is likely not clinically relevant. The average number of agonist muscles switching off following the quick force release was significantly greater with the LSO, compared to without the LSO (<it>P </it>= 0.003).</p> <p>Conclusions</p> <p>The LSO increased trunk stiffness and resulted in a greater number of agonist muscles shutting-off in response to a quick force release. However, these effects did not result in detrimental changes to the neuromuscular function of trunk muscles after 3 weeks of wearing a LSO 3 hours a day by healthy subjects.</p
    • 

    corecore