16 research outputs found

    A glimpse into the biogeography, seasonality, and ecological functions of arctic marine Oomycota

    Get PDF
    Source at https://doi.org/10.1186/s43008-019-0006-6. © The Author(s). 2019High-latitude environments are warming, leading to changes in biological diversity patterns of taxa. Oomycota are a group of fungal-like organisms that comprise a major clade of eukaryotic life and are parasites of fish, agricultural crops, and algae. The diversity, functionality, and distribution of these organisms are essentially unknown in the Arctic marine environment. Thus, it was our aim to conduct a first screening, using a functional gene assay and high-throughput sequencing of two gene regions within the 18S rRNA locus to examine the diversity, richness, and phylogeny of marine Oomycota within Arctic sediment, seawater, and sea ice. We detected Oomycota at every site sampled and identified regionally localized taxa, as well as taxa that existed in both Alaska and Svalbard. While the recently described diatom parasite Miracula helgolandica made up about 50% of the oomycete reads found, many lineages were observed that could not be assigned to known species, including several that clustered with another recently described diatom parasite, Olpidiopsis drebesii. Across the Arctic, Oomycota comprised a maximum of 6% of the entire eukaryotic microbial community in Barrow, Alaska May sediment and 10% in sea ice near the Svalbard archipelago. We found Arctic marine Oomycota encode numerous genes involved in parasitism and carbon cycling processes. Ultimately, these data suggest that Arctic marine Oomycota are a reservoir of uncharacterized biodiversity, the majority of which are probably parasites of diatoms, while others might cryptically cycle carbon or interface other unknown ecological processes. As the Arctic continues to warm, lower-latitude Oomycota might migrate into the Arctic Ocean and parasitize non-coevolved hosts, leading to incalculable shifts in the primary producer community

    The simple holocarpic oomycetes: Taxonomy and phylogenetic study

    No full text
    The early-diverging oomycetes contain a large number of holocarpic obligate parasites of diatoms, algae, aquatic phycomycetes, and invertebrate animals. These organisms are diverse and widespread. However, taxonomic placement most of the early-diverging oomycetes remains provisional and unresolved, since many have not been sequenced and studied for molecular phylogeny. Here, we report the taxonomy and phylogeny of several holocarpic oomycetes that we have rediscovered and newly classified, including several new species combinations. Phylogenetic reconstructions revealed that the type species of genus Ectrogella (E. bacillariacearum) is a member of the early-diverging Saprolegniales, while the type species of Olpidiopsis (O. saprolegniae) and Pontisma (P. lagenidioides) grouped within the early-diverging lineage of oomycetes forming distinct clades. Since the monophyletic red-algae parasitoids are unrelated to the Olpidiopsis, these were reclassified to the genus Pontisma, while genus Diatomophthora was introduced to accommodate all the diatom parasitoids that were previously assigned to Olpidiopsis. In addition, four new oomycete parasitoids, Miracula helgolandica, Miracula moenusica, Diatomophthora drebesii and Olpidiopsis parthenogenetica and a single rediscovered species, Diatomophthora gillii, are also classified here, including eight new species combinations of red-algae parasites (Pontisma bostrychiae, P. heterosiphoniae, P. muelleri, P. palmariae, P. porphyrae, P. pyropiae) and diatom parasitoids (Diatomophthora drebesii, D. gillii). The results obtained in this study have further improved the resolution and expanded the knowledge on the phylogeny of the earlydiverging oomycetes, leading to the establishment of three new orders (Miraculales, Diatomophthorales, Pontismatales) and one order (Anisolpidiales) being reintroduced

    ssu & cox2 alignments of Petersenia lobata phylogenetic placement.pdf

    No full text
    18s and cox2 sequence alignment for the phylogenetic placement of Petersenia lobata in the Oomycetes early diverging-lineages</p

    Miracula moenusica, a new member of the holocarpic parasitoid genus from the invasive freshwater diatom Pleurosira laevis

    No full text
    Holocarpic oomycetes are poorly known but widespread parasites in freshwater and marine ecosystems. Most of the holocarpic species seem to belong to clades that diverge before the two crown lineages of the oomycetes, the Saprolegniomycetes and the Peronosporomycetes. Recently, the genus Miracula was described to accommodate Miracula helgolandica, a holocarpic parasitoid of Pseudo-nitzschia diatoms, which received varying support for its placement as the earliest-diverging oomycete lineage. In the same phylogenetic reconstruction, Miracula helgolandica was grouped with some somewhat divergent sequences derived from environmental sequencing, indicating that Miracula would not remain monotypic. Here, a second species of Miracula is reported, which was found as a parasitoid in the limnic centric diatom Pleurosira leavis. Its life-cycle stages are described and depicted in this study and its phylogenetic placement in the genus Miracula revealed. As a consequence, the newly discovered species is introduced as Miracula moenusica

    <i>Miracula polaris</i> – A New Species of <i>Miracula</i> from the East Fjords of Iceland

    No full text
    There is increasing evidence that holocarpic oomycetes, i.e., those converting their entire vegetative thallus into zoospores upon maturation, are a phylogenetically diverse group in both freshwater and marine ecosystems. Most of the known holocarpic oomycete species diverge before the main split of Peronosporomycetes and Saprolegniomycetes and are, thus, termed as early-diverging oomycetes. In environmental sequencing studies, it was revealed that of the early-diverging genera especially Sirolpidium, Miracula, and Diatomophthora are widespread. As in these studies especially the Arctic Ocean seemed to harbor many undiscovered species, sampling was conducted at the Blávík research station on Fáskrúðsfjörður in the East Fjords of Iceland, where there is both an influence from the Arctic Ocean and the North Atlantic. During the screening for infected diatoms, a parasitoid was found in the marine diatom genus Melosira, which is one of the most abundant genera in arctic ecosystems. Molecular phylogenetics and morphological characterization revealed that the parasitoid belonged to the genus Miracula and corresponded to one of the lineages previously found in single-cell sequencing. Thus, the current study both contributes to the knowledge of the genus Miracula and the increasing diversity of the genus suggests that the many linages found in environmental sequencing which can still not be associated with known species might represent actual species to be discovered in future studies.</p

    Dual culture of the oomycete Lagenisma coscinodisci Drebes and Coscinodiscus diatoms as a model for plankton/parasite interactions

    No full text
    Abstract Diatoms are thought to provide about 40% of total global photosynthesis and diatoms of the genus Coscinodiscus are an important, sometimes dominant, cosmopolitan component of the marine diatom community. The oomycete parasitoid Lagenisma coscinodisci is widespread in the northern hemisphere on its hosts in the genus Coscinodiscus. Because of its potential ecological importance, it would be a suitable pathogen model to investigate plankton/parasite interactions, but the species cannot be cultivated on media without its host, so far. Thus, it was the aim of this study to explore the potential of dual culture of host and pathogen in the laboratory and to optimise cultivation to ensure a long-term cultivation of the pathogen. Here, we report successful cultivation of a single spore strain of L. coscinodisci (Isla), on several Coscinodiscus species and strains, as well as the establishment of a cultivation routine with Coscinodiscus granii (CGS1 and CG36), which enabled us to maintain the single spore strain for more than 3 years in 6 cm Petri dishes and 10 ml tissue culture flasks. This opens up the opportunity to study the processes and mechanism in plankton/parasitoid interactions under controlled conditions

    Diatomophthoraceae – a new family of olpidiopsis-like diatom parasitoids largely unrelated to Ectrogella

    No full text
    The oomycete genus Ectrogella currently comprises a rather heterogeneous group of obligate endoparasitoids, mostly of diatoms and algae. Despite their widespread occurrence, little is known regarding the phylogenetic affinities of these bizarre organisms. Traditionally, the genus was included within the Saprolegniales, based on zoospore diplanetism and a saprolegnia/achlya-like zoospore discharge. The genus has undergone multiple re-definitions in the past, and has often been used largely indiscriminately for oomycetes forming sausage-like thalli in diatoms. While the phylogenetic affinity of the polyphyletic genus Olpidiopsis has recently been partially resolved, taxonomic placement of the genus Ectrogella remained unresolved, as no sequence data were available for species of this genus. In this study, we report the phylogenetic placement of Ectrogella bacillariacearum infecting the freshwater diatom Nitzschia sigmoidea. The phylogenetic reconstruction shows that Ectrogella bacillariacearum is grouped among the early diverging lineages of the Saprolegniomycetes with high support, and is unrelated to the monophyletic diatom-infecting olpidiopsis-like species. As these species are neither related to Ectrogella, nor to the early diverging lineages of Olpidiopsis s. str. and Miracula, they are placed in a new genus, Diatomophthora, in the present study

    Miracula moenusica, a new member of the holocarpic parasitoid genus from the invasive freshwater diatom Pleurosira laevis

    No full text
    Holocarpic oomycetes are poorly known but widespread parasites in freshwater and marine ecosystems. Most of the holocarpic species seem to belong to clades that diverge before the two crown lineages of the oomycetes, the Saprolegniomycetes and the Peronosporomycetes. Recently, the genus Miracula was described to accommodate Miracula helgolandica, a holocarpic parasitoid of Pseudo-nitzschia diatoms, which received varying support for its placement as the earliest-diverging oomycete lineage. In the same phylogenetic reconstruction, Miracula helgolandica was grouped with some somewhat divergent sequences derived from environmental sequencing, indicating that Miracula would not remain monotypic. Here, a second species of Miracula is reported, which was found as a parasitoid in the limnic centric diatom Pleurosira leavis. Its life-cycle stages are described and depicted in this study and its phylogenetic placement in the genus Miracula revealed. As a consequence, the newly discovered species is introduced as Miracula moenusica

    A new marine species of Miracula (Oomycota) parasitic to Minidiscus sp. in Iceland

    No full text
    Obligate endoparasitic oomycetes are known to ubiquitously occur in marine and freshwater diatoms, but their diversity is still largely unexplored. Many of these parasitoids are members of the early-diverging oomycete lineages (Miracula, Diatomophthora), others are within the Leptomitales of the Saprolegniomycetes (Ectrogella, Lagenisma) and some have been described in the Peronosporomycetes (Aphanomycopsis, Lagenidium). Even though some species have been recently described and two new genera were introduced (Miracula and Diatomophthora), the phylogeny and taxonomy of most of these organisms remain unresolved. This is contrasted by the high number of sequences from unclassified species, as recently revealed from environmental sequencing, suggesting the presence of several undiscovered species. In this study, a new species of Miracula is reported from a marine centric diatom (Minidiscus sp.) isolated from Skagaströnd harbor in Northwest Iceland. The morphology and life cycle traits of this novel oomycete parasite are described herein, and its taxonomic placement within the genus Miracula is confirmed by molecular phylogeny. As it cannot be assigned to any previously described species, it is introduced as Miracula islandica in this study. The genus Miracula thus contains three described holocarpic species (M. helgolandica, M. islandica, M. moenusica) to which likely additional species will need to be added in the future, considering the presence of several lineages known only from environmental sequencing that clustered within the Miracula clade

    Peronospora aquilegiicola made its way to Germany: the start of a new pandemic?

    No full text
    Peronospora aquilegiicola is a destructive pathogen of columbines and has wiped out most Aquilegia cultivars in several private and public gardens throughout Britain. The pathogen, which is native to East Asia was noticed in England and Wales in 2013 and quickly spread through the country, probably by infested plants or seeds. To our knowledge, the pathogen has so far not been reported from other parts of Europe. Here, we report the emergence of the pathogen in the northwest of Germany, based on morphological and phylogenetic evidence. As the pathogen was found in a garden in which no new columbines had been planted recently, we assume that the pathogen has already spread from its original point of introduction in Germany. This calls for an increased attention to the further spread of the pathogen and the eradication of infection spots to avoid the spread to naturally occurring columbines in Germany and to prevent another downy mildew from becoming a global threat, like Peronospora belbahrii and Plasmopara destructor, the downy mildews of basil and balsamines, respectively
    corecore