13 research outputs found

    Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance

    Get PDF
    BACKGROUND:The impact of human activities on the environmental resistome has been documented in many studies, but there remains the controversial question of whether the increased antibiotic resistance observed in anthropogenically impacted environments is just a result of contamination by resistant fecal microbes or is mediated by indigenous environmental organisms. Here, to determine exactly how anthropogenic influences shape the environmental resistome, we resolved the microbiome, resistome, and mobilome of the planktonic microbial communities along a single river, the Han, which spans a gradient of human activities. RESULTS:The bloom of antibiotic resistance genes (ARGs) was evident in the downstream regions and distinct successional dynamics of the river resistome occurred across the spatial continuum. We identified a number of widespread ARG sequences shared between the river, human gut, and pathogenic bacteria. These human-related ARGs were largely associated with mobile genetic elements rather than particular gut taxa and mainly responsible for anthropogenically driven bloom of the downstream river resistome. Furthermore, both sequence- and phenotype-based analyses revealed environmental relatives of clinically important proteobacteria as major carriers of these ARGs. CONCLUSIONS:Our results demonstrate a more nuanced view of the impact of anthropogenic activities on the river resistome: fecal contamination is present and allows the transmission of ARGs to the environmental resistome, but these mobile genes rather than resistant fecal bacteria proliferate in environmental relatives of their original hosts. Video abstract

    Production of 4-Hydroxybenzyl Alcohol by Metabolically Engineered Corynebacterium glutamicum

    No full text
    Kim B-Y, Jung H-B, Lee J-Y, Ferrer L, Purwanto HS, Lee JH. Production of 4-Hydroxybenzyl Alcohol by Metabolically Engineered Corynebacterium glutamicum. Microbiology and Biotechnology Letters. 2020;48(4):506-514

    Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid

    No full text
    © 2019, The Author(s), under exclusive licence to Springer Nature Limited.Recent work has shown that meningeal lymphatic vessels (mLVs), mainly in the dorsal part of the skull, are involved in the clearance of cerebrospinal fluid (CSF), but the precise route of CSF drainage is still unknown. Here we reveal the importance of mLVs in the basal part of the skull for this process by visualizing their distinct anatomical location and characterizing their specialized morphological features, which facilitate the uptake and drainage of CSF. Unlike dorsal mLVs, basal mLVs have lymphatic valves and capillaries located adjacent to the subarachnoid space in mice. We also show that basal mLVs are hotspots for the clearance of CSF macromolecules and that both mLV integrity and CSF drainage are impaired with ageing. Our findings should increase the understanding of how mLVs contribute to the neuropathophysiological processes that are associated with agein

    Structural Basis of E2–25K/UBB+1 Interaction Leading to Proteasome Inhibition and Neurotoxicity*

    No full text
    E2–25K/Hip2 is an unusual ubiquitin-conjugating enzyme that interacts with the frameshift mutant of ubiquitin B (UBB+1) and has been identified as a crucial factor regulating amyloid-β neurotoxicity. To study the structural basis of the neurotoxicity mediated by the E2–25K-UBB+1 interaction, we determined the three-dimensional structures of UBB+1, E2–25K and the E2–25K/ubiquitin, and E2–25K/UBB+1 complex. The structures revealed that ubiquitin or UBB+1 is bound to E2–25K via the enzyme MGF motif and residues in α9 of the enzyme. Polyubiquitylation assays together with analyses of various E2–25K mutants showed that disrupting UBB+1 binding markedly diminishes synthesis of neurotoxic UBB+1-anchored polyubiquitin. These results suggest that the interaction between E2–25K and UBB+1 is critical for the synthesis and accumulation of UBB+1-anchored polyubiquitin, which results in proteasomal inhibition and neuronal cell death
    corecore