12 research outputs found

    Armed conflict and population displacement as drivers of the evolution and dispersal of Mycobacterium tuberculosis

    Get PDF
    The “Beijing” Mycobacterium tuberculosis (Mtb) lineage 2 (L2) is spreading globally and has been associated with accelerated disease progression and increased antibiotic resistance. Here we performed a phylodynamic reconstruction of one of the L2 sublineages, the central Asian clade (CAC), which has recently spread to western Europe. We find that recent historical events have contributed to the evolution and dispersal of the CAC. Our timing estimates indicate that the clade was likely introduced to Afghanistan during the 1979–1989 Soviet–Afghan war and spread further after population displacement in the wake of the American invasion in 2001. We also find that drug resistance mutations accumulated on a massive scale in Mtb isolates from former Soviet republics after the fall of the Soviet Union, a pattern that was not observed in CAC isolates from Afghanistan. Our results underscore the detrimental effects of political instability and population displacement on tuberculosis control and demonstrate the power of phylodynamic methods in exploring bacterial evolution in space and time

    Global expansion of Mycobacterium tuberculosis lineage 4 shaped by colonial migration and local adaptation

    Get PDF
    On the basis of population genomic and phylogeographic analyses of 1669 Mycobacterium tuberculosis lineage 4 (L4) genomes, we find that dispersal of L4 has been completely dominated by historical migrations out of Europe. We demonstrate an intimate temporal relationship between European colonial expansion into Africa and the Americas and the spread of L4 tuberculosis (TB). Markedly, in the age of antibiotics, mutations conferring antimicrobial resistance overwhelmingly emerged locally (at the level of nations), with minimal cross-border transmission of resistance. The latter finding was found to reflect the relatively recent emergence of these mutations, as a similar degree of local restriction was observed for susceptible variants emerging on comparable time scales. The restricted international transmission of drug-resistant TB suggests that containment efforts at the level of individual countries could be successful

    International links between Streptococcus pneumoniae vaccine serotype 4 sequence type (ST) 801 in Northern European shipyard outbreaks of invasive pneumococcal disease

    Get PDF
    Background: Pneumococcal disease outbreaks of vaccine preventable serotype 4 sequence type (ST)801 in shipyards have been reported in several countries. We aimed to use genomics to establish any international links between them. Methods: Sequence data from ST801-related outbreak isolates from Norway (n = 17), Finland (n = 11) and Northern Ireland (n = 2) were combined with invasive pneumococcal disease surveillance from the respective countries, and ST801-related genomes from an international collection (n = 41 of > 40,000), totalling 106 genomes. Raw data were mapped and recombination excluded before phylogenetic dating. Results: Outbreak isolates were relatively diverse, with up to 100 SNPs (single nucleotide polymorphisms) and a common ancestor estimated around the year 2000. However, 19 Norwegian and Finnish isolates were nearly indistinguishable (0–2 SNPs) with the common ancestor dated around 2017. Conclusion: The total diversity of ST801 within the outbreaks could not be explained by recent transmission alone, suggesting that harsh environmental and associated living conditions reported in the shipyards may facilitate invasion of colonising pneumococci. However, near identical strains in the Norwegian and Finnish outbreaks does suggest that transmission between international shipyards also contributed to those outbreaks. This indicates the need for improved preventative measures in this working population including pneumococcal vaccination

    The epidemiological and economic effects from systematic depopulation of Norwegian marine salmon farms infected with pancreas disease virus

    No full text
    Pancreas disease (PD) is a viral disease associated with significant economic losses in Scottish, Irish, and Norwegian marine salmon aquaculture. In this paper, we investigate how disease-triggered harvest strategies (systematic depopulation of infected marine salmon farms) towards PD can affect disease dynamics and salmon producer profits in an endemic area in the southwestern part of Norway. Four different types of disease-triggered harvest strategies were evaluated over a four-year period (2011–2014), each scenario with different disease-screening procedures, timing for initiating the harvest interventions on infected cohorts, and levels of farmer compliance to the strategy. Our approach applies a spatio-temporal stochastic model for simulating the spread of PD in the separate scenarios. Results from these simulations were then used in cost-benefit analyses to estimate the net benefits of different harvest strategies over time. We find that the most aggressive strategy, in which infected farms are harvested without delay, was most efficient in terms of reducing infection pressure in the area and providing economic benefits for the studied group of salmon producers. On the other hand, lower farm compliance leads to higher infection pressure and less economic benefits. Model results further highlight trade-offs in strategies between those that primarily benefit individual producers and those that have collective benefits, suggesting a need for institutional mechanisms that address these potential tensions

    A genomic view of experimental intra- and interspecies transformation of a rifampicin resistance allele into Neisseria meningitidis

    No full text
    The spread of antibiotic resistance within and between different bacterial populations is a major health problem on a global scale. The identification of genetic transformation in genomic data from Neisseria meningitidis, the meningococcus (Mc), and other bacteria is problematic, since similar or even identical alleles may be involved. A particular challenge in naturally transformable bacteria generally is to distinguish between common ancestry and true recombined sites in sampled genome sequences. Furthermore, the identification of recombination following experimental transformation of homologous alleles requires identifiable differences between donor and recipient, which in itself influences the propensity for homologous recombination (HR). This study identifies the distribution of HR events following intraspecies and interspecies Mc transformations of rpoB alleles encoding rifampicin resistance by whole-genome DNA sequencing and single nucleotide variant analysis. The HR events analysed were confined to the genomic region surrounding the single nucleotide genetic marker used for selection. An exponential length distribution of these recombined events was found, ranging from a few nucleotides to about 72 kb stretches. The lengths of imported sequences were on average found to be longer following experimental transformation of the recipient with genomic DNA from an intraspecies versus an interspecies donor (P<0.001). The recombination events were generally observed to be mosaic, with donor sequences interspersed with recipient sequence. Here, we present four models to explain these observations, by fragmentation of the transformed DNA, by interruptions of the recombination mechanism, by secondary recombination of endogenous self-DNA, or by repair/replication mechanisms

    A genomic view of experimental intra- and interspecies transformation of a rifampicin resistance allele into Neisseria meningitidis

    No full text
    The spread of antibiotic resistance within and between different bacterial populations is a major health problem on a global scale. The identification of genetic transformation in genomic data from Neisseria meningitidis, the meningococcus (Mc), and other bacteria is problematic, since similar or even identical alleles may be involved. A particular challenge in naturally transformable bacteria generally is to distinguish between common ancestry and true recombined sites in sampled genome sequences. Furthermore, the identification of recombination following experimental transformation of homologous alleles requires identifiable differences between donor and recipient, which in itself influences the propensity for homologous recombination (HR). This study identifies the distribution of HR events following intraspecies and interspecies Mc transformations of rpoB alleles encoding rifampicin resistance by whole-genome DNA sequencing and single nucleotide variant analysis. The HR events analysed were confined to the genomic region surrounding the single nucleotide genetic marker used for selection. An exponential length distribution of these recombined events was found, ranging from a few nucleotides to about 72 kb stretches. The lengths of imported sequences were on average found to be longer following experimental transformation of the recipient with genomic DNA from an intraspecies versus an interspecies donor (P<0.001). The recombination events were generally observed to be mosaic, with donor sequences interspersed with recipient sequence. Here, we present four models to explain these observations, by fragmentation of the transformed DNA, by interruptions of the recombination mechanism, by secondary recombination of endogenous self-DNA, or by repair/replication mechanisms

    International links between Streptococcus pneumoniae vaccine serotype 4 sequence type (ST) 801 in Northern European shipyard outbreaks of invasive pneumococcal disease.

    Get PDF
    BackgroundPneumococcal disease outbreaks of vaccine preventable serotype 4 sequence type (ST)801 in shipyards have been reported in several countries. We aimed to use genomics to establish any international links between them.MethodsSequence data from ST801-related outbreak isolates from Norway (n = 17), Finland (n = 11) and Northern Ireland (n = 2) were combined with invasive pneumococcal disease surveillance from the respective countries, and ST801-related genomes from an international collection (n = 41 of > 40,000), totalling 106 genomes. Raw data were mapped and recombination excluded before phylogenetic dating.ResultsOutbreak isolates were relatively diverse, with up to 100 SNPs (single nucleotide polymorphisms) and a common ancestor estimated around the year 2000. However, 19 Norwegian and Finnish isolates were nearly indistinguishable (0-2 SNPs) with the common ancestor dated around 2017.ConclusionThe total diversity of ST801 within the outbreaks could not be explained by recent transmission alone, suggesting that harsh environmental and associated living conditions reported in the shipyards may facilitate invasion of colonising pneumococci. However, near identical strains in the Norwegian and Finnish outbreaks does suggest that transmission between international shipyards also contributed to those outbreaks. This indicates the need for improved preventative measures in this working population including pneumococcal vaccination

    International links between Streptococcus pneumoniae vaccine serotype 4 sequence type (ST) 801 in Northern European shipyard outbreaks of invasive pneumococcal disease

    No full text
    Background Pneumococcal disease outbreaks of vaccine preventable serotype 4 sequence type (ST)801 in shipyards have been reported in several countries. We aimed to use genomics to establish any international links between them. Methods Sequence data from ST801-related outbreak isolates from Norway (n = 17), Finland (n = 11) and Northern Ireland (n = 2) were combined with invasive pneumococcal disease surveillance from the respective countries, and ST801-related genomes from an international collection (n = 41 of > 40,000), totalling 106 genomes. Raw data were mapped and recombination excluded before phylogenetic dating. Results Outbreak isolates were relatively diverse, with up to 100 SNPs (single nucleotide polymorphisms) and a common ancestor estimated around the year 2000. However, 19 Norwegian and Finnish isolates were nearly indistinguishable (0–2 SNPs) with the common ancestor dated around 2017. Conclusion The total diversity of ST801 within the outbreaks could not be explained by recent transmission alone, suggesting that harsh environmental and associated living conditions reported in the shipyards may facilitate invasion of colonising pneumococci. However, near identical strains in the Norwegian and Finnish outbreaks does suggest that transmission between international shipyards also contributed to those outbreaks. This indicates the need for improved preventative measures in this working population including pneumococcal vaccination
    corecore