1,782 research outputs found

    Heat capacity of liquids: A hydrodynamic approach

    Full text link
    We study autocorrelation functions of energy, heat and entropy densities obtained by molecular dynamics simulations of supercritical Ar and compare them with the predictions of the hydrodynamic theory. It is shown that the predicted by the hydrodynamic theory single-exponential shape of the entropy density autocorrelation functions is perfectly reproduced for small wave numbers by the molecular dynamics simulations and permits the calculation of the wavenumber-dependent specific heat at constant pressure. The estimated wavenumber-dependent specific heats at constant volume and pressure, Cv(k)C_{v}(k) and Cp(k)C_{p}(k), are shown to be in the long-wavelength limit in good agreement with the macroscopic experimental values of CvC_{v} and CpC_{p} for the studied thermodynamic points of supercritical Ar.Comment: 8 pages, 5 figure

    Ab initio molecular dynamics study of collective excitations in liquid H2_2O and D2_2O: Effect of dispersion corrections

    Full text link
    The collective dynamics in liquid water is an active research topic experimentally, theoretically and via simulations. Here, ab initio molecular dynamics simulations are reported in heavy and ordinary water at temperature 323.15 K, or 50^\circC. The simulations in heavy water were performed both with and without dispersion corrections. We found that the dispersion correction (DFT-D3) changes the relaxation of density-density time correlation functions from a slow, typical of a supercooled state, to exponential decay behaviour of regular liquids. This implies an essential reduction of the melting point of ice in simulations with DFT-D3. Analysis of longitudinal (L) and transverse (T) current spectral functions allowed us to estimate the dispersions of acoustic and optic collective excitations and to observe the L-T mixing effect. The dispersion correction shifts the L and T optic (O) modes to lower frequencies and provides by almost thirty per cent smaller gap between the longest-wavelength LO and TO excitations, which can be a consequence of a larger effective high-frequency dielectric permittivity in simulations with dispersion corrections. Simulation in ordinary water with the dispersion correction results in frequencies of optic excitations higher than in D2_2O, and in a long-wavelength LO-TO gap of 24 ps1^{-1} (127 cm1^{-1}).Comment: 14 pages, 9 figure

    Profiles of electrostatic potential across the water-vapor, ice-vapor and ice-water interfaces

    Full text link
    Ice-water, water-vapor interfaces and ice surface are studied by molecular dynamics simulations with the SPC/E model of water molecules having the purpose to estimate the profiles of electrostatic potential across the interfaces. We have proposed a methodology for calculating the profiles of electrostatic potential based on a trial particle, which showed good agreement for the case of electrostatic potential profile of the water-vapor interface of TIP4P model calculated in another way. The measured profile of electrostatic potential for the pure ice-water interface decreases towards the liquid bulk region, which is in agreement with simulations of preferential direction of motion of Li+^{+} and F^{-} solute ions at the liquid side of the ice-water interface. These results are discussed in connection with the Workman-Reynolds effect.Comment: 7 pages, 5 figure

    A simple ansatz for the study of velocity autocorrelation functions in fluids at different timescales

    Full text link
    A simple ansatz for the study of velocity autocorrelation functions in fluids at different timescales is proposed. The ansatz is based on an effective summation of the infinite continued fraction at a reasonable assumption about convergence of relaxation times of the higher order memory functions, which have a purely kinetic origin. The VAFs obtained within our approach are compared with the results of the Markovian approximation for memory kernels. It is shown that although in the "overdamped" regime both approaches agree to a large extent at the initial and intermediate times of the system evolution, our formalism yields power law relaxation of the VAFs which is not observed at the description with a finite number of the collective modes. Explicit expressions for the transition times from kinetic to hydrodynamic regimes are obtained from the analysis of the singularities of spectral functions in the complex frequency plane.Comment: 14 pages, 2 figure

    Depletion potentials near geometrically structured substrates

    Full text link
    Using the recently developed so-called White Bear version of Rosenfeld's Fundamental Measure Theory we calculate the depletion potentials between a hard-sphere colloidal particle in a solvent of small hard spheres and simple models of geometrically structured substrates: a right-angled wedge or edge. In the wedge geometry, there is a strong attraction beyond the corresponding one near a planar wall that significantly influences the structure of colloidal suspensions in wedges. In accordance with an experimental study, for the edge geometry we find a free energy barrier of the order of several kBTk_B T which repels a big colloidal particle from the edge.Comment: 7 pages, 7 figure

    In memory of Zinoviy Gurskii

    No full text
    On May 29, 2004 Professor Zinoviy Gurskii, one of the leading Ukrainian experts in the theory of metals and alloys, would be 60. Unfortunately, a heavy illness took away on January 28, 2004 the life of the noted scientist and remarkable person
    corecore